
Chapter 2

Fine Structure

c© B. Zwiebach

2.1 Review of hydrogen atom

The hydrogen atom Hamiltonian is by now familiar to you. You have found the bound state
spectrum in more than one way and learned about the large degeneracy that exists for all
states except the ground state. We will call the hydrogen atom Hamiltonian H(0) and it is
given by

H(0) =
p2

2m
− e2

r
. (2.1.1)

We take this to be the “known” Hamiltonian, meaning that we know its spectrum. This
Hamiltonian is supplemented with corrections that can be studied in perturbation theory.
That study is the subject of this chapter. We begin, however, with some review and
comments.

The mass m in H(0) is the reduced mass of the electron and proton, which we can
accurately set equal to the mass of the electron. If one wishes to consider the case of an an
electron bound to a nucleus with Z protons one lets e2 → Ze2 in H(0). The Bohr radius is
the length scale build from ~,m, and e2

a0 ≡
~
2

me2
∼ 53 pm. (2.1.2)

The energy levels are enumerated using a principal quantum number n, an integer that
must be greater or equal to one:

En = − e2

2a0

1

n2
, n = 1, 2, . . . . (2.1.3)

Note that H(0) is a non-relativistic Hamiltonian: the speed of light does not enter in it,
and the kinetic term is that of Newtonian mechanics. The energy scale relevant to the
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26 CHAPTER 2. HYDROGEN ATOM FINE STRUCTURE

bound state spectrum can be better appreciated using the speed of light to consider both
the fine structure constant and the rest energy of the electron. The fine structure constant
is given by

α ≡ e2

~c
≃ 1

137
, (2.1.4)

and the rest energy of the electron is mc2. Then,

e2

a0
=

me4

~2
=

mα2
~
2c2

~2
= α2mc2 . (2.1.5)

This states that the energy scale of hydrogen bound states is a factor of α2 smaller than
the rest energy of the electron, that is, about 19000 times smaller. We can thus rewrite the
possible energies as:

En = −1
2 α

2mc2
1

n2
. (2.1.6)

The typical momentum in the hydrogen atom is

p ≃ ~

a0
=

me2

~
=

e2

~c
mc → p ≃ α(mc) , (2.1.7)

which, written as p ≃ m(αc) says that the typical velocity is v ≃ αc, which is low enough
that the non-relativistic approximation is fairly accurate. Finally, we note that

a0 =
~
2

mα~c
=

~

mc

1

α
=

λ̄

α
, (2.1.8)

which says that the Bohr radius is over a hundred times bigger than the (reduced) Compton
wavelength of the electron.

The degeneracy of the hydrogen atom spectrum is completely quantified by the relation

n = N + ℓ+ 1 . (2.1.9)

Here N ≥ 0 is the degree of a polynomial in r that appears in a wavefunction where the
leading dependence on r near the origin is factored out. The quantum number ℓ ≥ 0 is the
angular momentum of the state. For each fixed n, you can see that the number ℓ ranges
from zero to n − 1. And for each fixed ℓ the eigenvalue of Lz is m~ with m ranging from
−ℓ up to ℓ:

n = 1, 2, . . . ℓ = 0, 1, . . . , n− 1

m = −ℓ, . . . , ℓ # of states with energy En =

n−1∑

ℓ=0

(2ℓ+ 1) = n2

The states of hydrogen are shown in this energy diagram, which is not drawn to scale,
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S P D F
ℓ = 0 ℓ = 1 ℓ = 2 ℓ = 3

...
...

...
...

...

n = 4
N = 3 N = 2 N = 1 N = 0

n = 3
N = 2 N = 1 N = 0

n = 2
N = 1 N = 0

n = 1
N = 0

The table features the commonly used notation where capital letters are used to denote
the various values of the orbital angular momentum ℓ. If we have L denote the generic
capital letter for angular momentum we have L(ℓ) where

L(ℓ = 0) = S , L(ℓ = 1) = P , L(ℓ = 2) = D , L(ℓ = 3) = F , . . . . (2.1.10)

Thus, for example, an S state is a state with ℓ = 0, a P state is a state with ℓ = 1, and a
D state is a state with ℓ = 2.

Any hydrogen eigenstate specified by the three quantum numbers n, ℓ,m, because, as it
follows from (2.1.9), the value of N is then fixed. The wavefunction takes the form

ψn,ℓ,m(x) = A

(
r

a0

)ℓ

·
(
Polynomial in

r

a0
of degree N

)
· e−

r
na0 Yℓ,m(θ, φ) , (2.1.11)

where A is a normalization constant and N = n− (ℓ+ 1). If you look at the wavefunction,
the value of n can be read from the exponential factor. The value of ℓ can be read from
the radial prefactor, or from the spherical harmonic. The value of m can be read from
the spherical harmonic. For the ground state n = 1, ℓ = 0 and m = 0. The normalized
wavefunction is

ψ1,0,0(r) =
1√
πa30

e
− r

a0 . (2.1.12)

Comments:

1. There are n2 degenerate states at any energy level with principal quantum number
n. This degeneracy explained by the existence of a conserved quantum Runge-Lenz
vector. For a given n the states with various ℓ’s correspond, in the semiclassical
picture, to orbits of different eccentricity but the same semi-major axis. The orbit
with ℓ = 0 is the most eccentric one and the orbit with maximum ℓ = n − 1 is the
most circular one.
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2. For each fixed value of ℓ, the states have increasing N as we move up in energy. The
number N is the number of nodes in the solution of the radial equation, that’s why
it is the degree of the polynomial in r that features in the wavefunction (2.1.11).

3. The analysis of H(0) so far ignored electron spin. Since the electron is a spin one-
half particle there is an extra degeneracy: each of the H(0) eigenstates is really two
degenerate states, one with the electron spin up and the other with the electron spin
down. These states are degenerate because H(0) has no spin dependence.

4. We will have to supplement H(0) with terms that correspond to corrections that arise
from relativity and from the spin of the electron. This will be the main subject of
the following analysis. It will determine the fine-structure of the hydrogen atom. The
corrections will break much of the degeneracy of the spectrum.

5. In order to understand better the spectrum and the properties of the Hydrogen atom
one can apply an electric field, leading to the Stark effect or a magnetic field, leading
to the Zeeman effect. These external fields are represented by extra terms in the
hydrogen atom Hamiltonian.

Let us now discuss two different choices of basis states for the hydrogen atom, both of
which include the electron spin properly.

Recall that, in general, for a multiplet of angular momentum j, we have states (j,mj),

with mj running from −j to j in integer steps. All states in the multiplet are Ĵ2 eigenstates
with eigenvalue ~

2j(j + 1) and, for each state, ~mj is the eigenvalue of Ĵz.
Because the electron has spin one half, its states are labeled as

(s,ms) , with s = 1
2 , ms = ±1

2 . (2.1.13)

In the hydrogen atom the angular momentum ℓ can take different values, but the spin of
the electron is always one-half. As a result, the label s is often omitted, and we usually only
record the value of ms. For hydrogen basis states we thus have quantum numbers n, ℓ,mℓ,
and ms. To avoid confusion, we have added the ℓ subscript to mℓ, thus emphasizing that
this is the azimuthal quantum number for orbital angular momentum. Since we are not
combining the electron spin to its orbital angular momentum, the states form the “uncoupled
basis”:

Uncoupled basis quantum numbers: (n, ℓ,mℓ,ms) . (2.1.14)

The states are completely specified by these quantum numbers. As we let those quantum
numbers run over all possible values we obtain an orthonormal basis of states.

It is often useful to use an alternative basis where the states are eigenstates of Ĵ2 and Ĵz,
where the total angular momentum Ĵ is obtained by adding the orbital angular momentum
L̂ to the spin angular momentum Ŝ:

Ĵ = L̂+ Ŝ . (2.1.15)
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When we form ℓ⊗ s we are tensoring a a full ℓ multiplet to an s multiplet (here, of course,
s = 1/2). All states in ℓ⊗ s are eigenstates of L̂2 and eigenstates of Ŝ2, so ℓ and s are good
(constant) quantum numbers for all j multiplets that arise in the tensor product. Each j
multiplet has states with quantum numbers (j,mj).

The coupled basis is one where states are organized into j multiplets. While states are
no longer L̂z nor Ŝz eigenstates they are still L̂2 eigenstates, thus the ℓ quantum number
survives. The coupled basis quantum numbers are therefore

Coupled basis quantum numbers: (n, ℓ, j,mj) . (2.1.16)

The (mℓ,ms) quantum numbers of the uncoupled basis have been traded for (j,mj) quan-
tum numbers and we have kept the n, ℓ quantum numbers. The coupled states are linear
combinations of uncoupled states that involve different values of mℓ and ms, those combi-
nations that yield the same value of mj = mℓ +ms.

To find the list of coupled basis states we must tensor each ℓ multiplet in the hydrogen
atom spectrum with the spin doublet 1

2 . The rules of addition of angular momentum imply
that we find two j multiplets:

ℓ⊗ 1
2 = (j = ℓ+ 1

2 )⊕ (j = ℓ− 1
2 ) . (2.1.17)

For ℓ = 0, we only obtain a j = 1/2 multiplet. We use the notation Lj for the coupled
multiplets, with L = S,P,D,F for ℓ = 0, 1, 2, and 3 (see (2.1.10). The change of basis is
summarized by the replacements

ℓ⊗ 1
2 → L(ℓ)

j=ℓ+
1
2
⊕ L(ℓ)

j=ℓ−1
2

(2.1.18)

or more explicitly,

0⊗ 1
2 → S 1

2

1⊗ 1
2 → P 3

2
⊕ P 1

2

2⊗ 1
2 → D 5

2
⊕D 3

2

3⊗ 1
2 → F 7

2
⊕ F 5

2

(2.1.19)

Thus, by the time we combine with electron spin, each ℓ = 0 state gives one j = 1
2 multiplet,

each ℓ = 1 state gives j = 3
2 and j = 1

2 multiplets, each ℓ = 2 state gives j = 5
2 and j = 3

2
multiplets, and so on. For hydrogen, the principal quantum number is placed ahead to
denote the coupled multiplets by

Coupled basis notation for multiplets: nLj (2.1.20)

Using this notation for coupled basis multiplets the diagram of hydrogen atom energy
eigenstates becomes:
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S P D
ℓ = 0 ℓ = 1 ℓ = 2

...
...

...
...

n = 4
4S 1

2

n = 3
3S 1

2 3P 3
2

3D 3
2

(2) (6) 3P 1
2

(10) 3D 5
2

n = 2
2S 1

2 2P 3
2

(2) (6) 2P 1
2

n = 1
1S 1

2

(2)

The number of states is indicated in parenthesis.

2.2 The Pauli equation

In the hydrogen atom the spin-orbit coupling arises because the electron is moving in the
electric field of the proton. Since the electron is moving relative to the frame where we have
a static electric field, the electron also sees a magnetic field B. The spin-orbit coupling is
the coupling −µ ·B of that magnetic field to the magnetic dipole moment µ of the electron.

We have discussed before, in the context of the Stern-Gerlach experiment, the value of
the magnetic dipole moment of the electron. Recall the logic we used. In Gaussian units,
the classical magnetic moment of a planar current loop is given by µ = I

ca, where I is the
current and a is the area vector associated with the loop. From this one quickly derives
that for a uniformly rotating particle with charge q and mass m the magnetic moment is

µ =
q

2mc
L , (2.2.1)

where L is the angular momentum due to the rotation. For an elementary particle, this
motivates the following relation between the spin angular momentum operator Ŝ and the
magnetic moment

µ = g
q

2mc
Ŝ (2.2.2)

where g is a factor that is added to parameterize our ignorance; after all there is no reason
why the classically motivated formula for the magnetic dipole should hold in the quantum
domain of spin. As it turns out, for an electron one has g = 2. Since q = −e for an electron,
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we have

µ = 2
−e
2mec

Ŝ = −2
e~

2mec

Ŝ

~
= −2

e~

2mec
1
2σ = − e~

2mec
σ . (2.2.3)

For numerical applications we note that the Bohr magneton µB is defined by

µB =
e~

2mec
≃ 9.274 × 10−21 erg

gauss
= 5.79× 10−9 eV

gauss
. (2.2.4)

(for SI values use Tesla = 104 gauss). The coupling of an electron to an external magnetic
field is therefore represented by a Hamiltonian HB given by

HB = −µ ·B =
e~

2mec
σ ·B . (2.2.5)

Our goal now is to show that this coupling, and its associated prediction of g = 2, arises
naturally from the non-relativistic Pauli equation for an electron.

Consider first the time-independent Schrödinger equation for a free particle:

p̂2

2m
ψ = E ψ . (2.2.6)

Since a spin one-half particle has two degrees of freedom, usually assembled into a column
vector χ, the expected equation for a free spin one-half particle is

p̂2

2m
χ = E χ with χ =

(
χ1

χ2

)
. (2.2.7)

One sometimes calls χ a Pauli spinor. Note there’s an implicit two-by-two identity matrix
12×2 in the Hamiltonian

H =
p̂2

2m
12×2 . (2.2.8)

We can rewrite this Hamiltonian using Pauli matrices if we recall the identity

(σ · a)(σ · b) = a · b12×2 + iσ · (a× b) , (2.2.9)

valid for arbitrary vector operators a and b. Taking a = b = p̂, with p̂ the momentum
operator, and recognizing that p̂× p̂ = 0, we have

(σ · p̂) · (σ · p̂) = p̂2
12×2 . (2.2.10)

This means that the Hamiltonian (2.2.8) can be rewritten as

H =
1

2m
(σ · p̂)(σ · p̂) . (2.2.11)
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So far, this is all just rewriting with no change in physics. But new things happen when we
the particle is charged and we couple it to external electromagnetic fields. The quantum
mechanical rule is that this inclusion can be taken care with the replacement

p̂ → π̂ ≡ p̂− q

c
A . (2.2.12)

Here q is the charge of the particle and A is the external vector potential, a function
of position that becomes an operator A(x̂) since position is an operator. In addition, if
there is a electromagnetic scalar potential Φ it contributes an additional term qΦ(x̂) to the
Hamiltonian.

With the replacement (2.2.12) applied to the Hamiltonian (2.2.11), and the inclusion of
the coupling to the scalar potential, we get the Pauli Hamiltonian:

HPauli =
1

2m
(σ · π̂) (σ · π̂) + qΦ(x̂) . (2.2.13)

This time, using the identity (2.2.9), the second term survives

HPauli =
1

2m
[(π̂ · π̂)1+ iσ · (π̂ × π̂)] + qΦ(x̂) . (2.2.14)

We have π̂ × π̂ 6= 0 because the various πi do not commute. Note that the replacement
(2.2.12) applied to the original Hamiltonian (2.2.8) would not have given us the π̂× π̂ term.

To evaluate that term we use

(π̂ × π̂)k = ǫijkπ̂iπ̂j = 1
2ǫijk[π̂i, π̂j ] . (2.2.15)

The commutator here is

[πi , πj ] =
[
pi −

q

c
Ai , pj −

q

c
Aj

]
. (2.2.16)

As usual, the p̂ components can be thought of as derivatives acting on the spatially de-
pendent components of A. Moreover, the Ai’s being only functions of position, commute
among themselves and we have

[πi , πj ] = −~

i

q

c
(∂iAj − ∂jAi) =

i~q

c
(∂iAj − ∂jAi) . (2.2.17)

Therefore, back in (2.2.16)

(π × π)k = 1
2ǫijk

i~q

c
(∂iAj − ∂jAi) =

i~q

c
ǫijk∂iAj =

i~q

c
(∇×A)k , (2.2.18)

leading to the elegant result:

π̂ × π̂ =
i~q

c
B . (2.2.19)
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This equation is a bit reminiscent of the equation L̂× L̂ = i~L̂, for angular momentum.
Back in the Pauli Hamiltonian (2.2.14), leaving identity matrices implicit, and setting

q = −e, we find

HPauli =
1

2m

(
p̂+

e

c
A
)2

+
i

2m

i~q

c
σ ·B − eΦ(x̂)

=
1

2m

(
p̂+

e

c
A
)2

+
e~

2mc
σ ·B − eΦ(x̂) .

(2.2.20)

The second term in this expanded Pauli Hamiltonian gives the coupling of the electron spin
to the magnetic field and agrees precisely with the expected coupling (2.2.5). We thus see
that the Pauli equation predicts the g = 2 value in the electron magnetic moment.

2.3 The Dirac equation

While the Pauli equation incorporates correctly the coupling of the electron spin to electro-
magnetic fields, it is not a relativistic equation. As discovered by Dirac, to include relativity
one has to work with matrices and the Pauli spinor must be upgraded to a four-component
spinor. The analysis begins with the familiar relation between relativistic energies and
momenta

E2 − p2c2 = m2c4 → E =
√

p2c2 +m2c4 (2.3.1)

This suggests that a relativistic Hamiltonian for a free particle could take the form

H =
√

p̂2c2 +m2c4 , (2.3.2)

with associated Schrödinger equation

i~
∂ψ

∂t
=
√

p̂2c2 +m2c4 ψ . (2.3.3)

It is not clear how to treat the square root so, at least for small velocities p ≪ mc, the
Hamiltonian can be expanded:

H = mc2
√

1 +
p̂2

m2c2
= mc2

[
1 +

p̂2

2m2c2
− 1

8

(
p̂2

m2c2

)2

+ . . .

]

= mc2 +
p̂2

2m
− 1

8

p̂4

m3c2
+ . . .

(2.3.4)

If we ignore the constant rest mass, the first term is the familiar non-relativistic Hamiltonian,
and the next term is the first nontrivial relativistic correction. For small momenta we will
treat that term as a perturbation.

More elegantly, Dirac wanted to find a Hamiltonian linear in momenta and without
square roots. This would be possible if one could write the relativistic energy as the square
of a linear function of the momentum:

c2p̂2 +m2c4 = (cα · p̂+ βmc2)2 = (cα1p̂1 + cα2p̂2 + cα3p̂3 + βmc2)2 . (2.3.5)
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Expanding the right-hand side and equating coefficients one finds that the following must
hold

α2
1 = α2

2 = α2
3 = β2 = 1 ,

αiαj + αjαi = {αi, αj} = 0 , i 6= j ,

αiβ + βαi = {αi, β} = 0 .

(2.3.6)

The relations on the second and third lines imply that α’s and β’s can’t be numbers, because
they would have to be zero. It turns out that α’s and β’s are four-by-four hermitian matrices:

α =

(
0 σ

σ 0

)
, β =

(
1 0
0 −1

)
. (2.3.7)

Using (2.3.5), the Dirac Hamiltonian is simply the linear function of momentum that is the
square root of c2p̂2 +m2c4. We thus have

HDirac = cα · p+ βmc2 . (2.3.8)

The Dirac equation is

i~
∂Ψ

∂t
=
(
cα · p+ βmc2

)
Ψ , (2.3.9)

where Ψ is a Dirac spinor, a four-component column vector that can be thought to be
composed by two two-component Pauli spinors χ and η:

Ψ =

(
χ
η

)
, χ =

(
χ1

χ2

)
, η =

(
η1
η2

)
. (2.3.10)

The coupling to electromagnetic fields is done as before

i~
∂Ψ

∂t
=
[
cα ·

(
p̂+

e

c
A
)
+ βmc2 + V (r)

]
Ψ , (2.3.11)

where the coupling of the electron to the scalar potential Φ(r) is included via

V (r) = −eΦ(r) = −e
2

r
. (2.3.12)

The great advantage of the Dirac equation (2.3.11) is that the corrections to the hydrogen
Hamiltonian H(0) can be derived systematically by finding the appropriate Hamiltonian H
that acts on the Pauli spinor χ. The analysis, can be done with A = 0, since the stationary
proton creates no vector potential. The result of the analysis shows that

Hχ = Eχ , (2.3.13)

where:

H =
p̂2

2m
+ V

︸ ︷︷ ︸
H(0)

− p̂4

8m3c2︸ ︷︷ ︸
δHrel.

+
1

2m2c2
1

r

dV

dr
S · L

︸ ︷︷ ︸
δHspin-orbit

+
~
2

8m2c2
∇2V

︸ ︷︷ ︸
δHDarwin

. (2.3.14)
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The first correction is the relativistic energy correction anticipated earlier. The second is
the spin-orbit coupling, and the third is the Darwin correction, that as we shall see affects
only ℓ = 0 states.

Recall that the energy scale for H(0) eigenstates is α2mc2. We will now see that all the

above energy corrections are of order α4mc2 thus smaller by a factor of α2 ≃ 1
19000 than the

zeroth-order energies. This suggests that for the hydrogen atom, the role of the unit-free
parameter λ of perturbation theory is taken by the fine structure constant: λ ∼ α2. Of
course, in reality we cannot adjust the value of α2 nor we can take it to zero.

For the relativistic correction, recalling that p ≃ αmc, we indeed have

δHrel. = − p4

8m3c2
∼ −α4mc2 . (2.3.15)

For spin-orbit we first rewrite the term, using

1

r

dV

dr
=

1

r

d

dr

(
−e

2

r

)
=
e2

r3
, (2.3.16)

so that

δHspin-orbit =
e2

2m2c2
1

r3
S · L . (2.3.17)

For an estimate we set S · L ∼ ~
2, r ∼ a0, and recall that a0 =

~

mc
1
α :

δHspin-orbit ∼ e2

m2c2
~
2

a30
=

α ~c

m2c2
~
2

a30
= α

(
~

mca0

)3
mc2 = α4mc2 . (2.3.18)

We can evaluate the Darwin term using V = −e2/r:

δHDarwin = − e2~2

8m2c2
∇2

(
1

r

)
=

e2~2

8m2c2
(−4πδ(r)) =

π

2

e2~2

m2c2
δ(r) . (2.3.19)

To estimate this correction note that, due to the δ function the the integral in the expecta-
tion value will introduce a factor |ψ(0)|2 ∼ a−3

0 . We will therefore have

δHDarwin ∼ e2~2

m2c2a30
∼ α4mc2 , (2.3.20)

as this is exactly the same combination of constants that we had for spin orbit above.

2.4 Fine structure of hydrogen

The fine structure of hydrogen is the spectrum of the atom once one takes into account the
corrections indicated in (2.3.14). After the partial simplifications considered above we have

H =
p̂2

2m
+ V

︸ ︷︷ ︸
H(0)

− p̂4

8m3c2︸ ︷︷ ︸
δHrel.

+
e2

2m2c2
S · L
r3︸ ︷︷ ︸

δHspin-orbit

+
π

2

e2~2

m2c2
δ(r)

︸ ︷︷ ︸
δHDarwin

. (2.4.21)
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We will study each of these terms separately and then combine our results to give the fine
structure of hydrogen. There are further smaller corrections that we will not examine here,
such as hyperfine splitting and Lamb effect.

2.4.1 Darwin correction

Let us now evaluate the Darwin correction. Since this interaction has a delta function
at the origin, the first order correction to the energy vanishes unless the wavefunction is
non-zero at the origin. This can only happen for nS states. There is no need to use the
apparatus of degenerate perturbation theory. Indeed, for fixed n there are two orthogonal
ℓ = 0 states, one with electron spin up and one with electron spin down. While these states
are degenerate, the Darwin perturbation commutes with spin and is therefore diagonal in
the two-dimensional subspace. There is no need to include the spin in the calculation and
we have

E
(1)
n00,Darwin

= 〈ψn00|δHDarwin|ψn00〉 =
π

2

e2~2

m2c2
|ψn00(0)|2 . (2.4.22)

As is shown in the homework, the radial equation can be used to determine the value of the
nS wavefunctions at the origin. You will find that

|ψn00(0)|2 =
1

π n3a30
. (2.4.23)

As a result

E
(1)
n00,Darwin

=
e2~2

2m2c2
1

a30n
3

= α4(mc2)
1

2n3
. (2.4.24)

This completes the evaluation of the Darwin correction

The Darwin term in the Hamiltonian arises from the elimination of one of the two two-
component spinors in the Dirac equation. As we will show now such a correction would arise
from a nonlocal correction to the potential energy term. It is as if the electron had grown
from point-like to a ball with radius of order its Compton wavelength ~

mec
. The potential

energy due to the field of the proton must then be calculated by integrating the varying
electric potential over the charge distribution of the electron. While a simple estimate of
this nonlocal potential energy does reproduce the Darwin correction rather closely, one must
not reach the conclusion that the electron is no longer a point particle. Still the fact remains
that in a relativistic treatment of an electron, its Compton wavelength is relevant and is
physically the shortest distance an electron can be localized.

The potential energy V (r) of the electron, as a point particle, is the product of the
electron charge (−e) times the electric potential Φ(r) created by the proton:

V (r) = (−e)Φ(r) = (−e) e
r
. (2.4.25)

Let us call Ṽ (r) the potential energy when the electron is a charge distribution centered
at a point r with |r| = r (see Figure 2.1). This energy is obtained by integration over the
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Figure 2.1: A Darwin type correction to the energy arises if the electron charge is smeared over a
region of size comparable to its Compton wavelength. Here the center of the spherically symmetric
electron cloud is at P and the proton is at the origin. The vector u is radial relative to the center
of the electron.

electron distribution. Using the vector u to define position relative to the center P of the
electron, and letting ρ(u) denote the position dependent charge density, we have

Ṽ (r) =

∫

electron
d3u ρ(u)Φ(r+ u) , (2.4.26)

where, as shown in the Figure, r + u is the position of the integration point, measured
relative to the proton at the origin. It is convenient to write the charge density in terms of
a normalized function ρ0:

ρ(u) = −e ρ0(u) →
∫

electron
d3u ρ0(u) = 1 , (2.4.27)

which guarantees that the integral of ρ over the electron is indeed (−e). Recalling that
−eΦ(r+ u) = V (r+ u) we now rewrite (2.4.26) as

Ṽ (r) =

∫

electron
d3u ρ0(u)V (r+ u) . (2.4.28)

This equation has a clear interpretation: the potential energy is obtained as a weighted
integral of potential due to the proton over the extended electron. If the electron charge
would be perfectly localized, ρ0(u) = δ(u) and Ṽ (r) would just be equal to V (r). We will
assume that the distribution of charge is spherically symmetric, so that

ρ0 (u) = ρ0(u) . (2.4.29)
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To evaluate (2.4.31), we first do a Taylor expansion of the potential that enters the integral
about the point u = 0:

V (r+ u) = V (r) +
∑

i

∂iV
∣∣∣
r

ui +
1

2

∑

i,j

∂i∂jV
∣∣∣
r

uiuj + . . . (2.4.30)

All derivatives here are evaluated at the center of the electron. Plugging back into the
integral (2.4.31) and dropping the subscript ‘electron’ we have

Ṽ (r) =

∫
d3u ρ0(u)

(
V (r) +

∑

i

∂iV
∣∣∣
r

ui +
1

2

∑

i,j

∂i∂jV
∣∣∣
r

uiuj + . . .
)
. (2.4.31)

All r dependent functions can be taken out of the integrals. Recalling that the integral of
ρ0 over volume is one, we get

Ṽ (r) = V (r) +
∑

i

∂iV
∣∣∣
r

∫
d3u ρ0 (u) ρi +

1
2

∑

i,j

∂i∂jV
∣∣∣
r

∫
d3u ρ0 (u)uiuj+. . . (2.4.32)

Due to spherical symmetry the first integral vanishes and the second takes the form
∫
d3u ρ0 (u)uiuj = 1

3δij

∫
d3u ρ0 (u) u

2 . (2.4.33)

Indeed the integral must vanish for i 6= j and must take equal values for i = j = 1, 2, 3.
Since u2 = u21 + u22 + u23, the result follows. Using this we get

Ṽ (r) = V (r) + 1
2

∑

i

∂i∂iV
∣∣∣
r

1
3

∫
d3u f (u) ρ2 + . . .

= V (r) + 1
6∇2V

∫
d3u ρ0 (u) u

2 + . . . .

(2.4.34)

The second term represents the correction δV to the potential energy:

δV = 1
6∇

2V

∫
d3u ρ0 (u) u

2 . (2.4.35)

To get an estimate, let us assume that the charge is distributed uniformly over a sphere of
radius u0. This means that ρ0(u) is a constant for u < u0

ρ0(u) =
3

4πu30





1, u < u0,

0, u > u0 .
(2.4.36)

The integral one must evaluate then gives

∫
d3u ρ0(u)u

2 =

∫ u0

0

4πu2duu2

4π
3 u

3
0

=
3

u30

∫ u0

0
u4du = 3

5u
2
0 . (2.4.37)
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Therefore,
δV = 1

10u
2
0∇2V . (2.4.38)

If we choose the radius u0 of the charge distribution to be the Compton wavelength ~

mc of
the electron we get,

δV =
~
2

10m2c2
∇2V . (2.4.39)

Comparing with (2.3.14) we see that, up to a small correction (18 as opposed to 1
10 ), this

is the Darwin energy shift. The agreement is surprisingly good for what is, admittedly, a
heuristic argument.

2.4.2 Relativistic correction

We now turn to the relativistic correction. The energy shifts of the hydrogen states can
be analyzed among the degenerate states with principal quantum number n. We write
tentatively for the corrections

E
(1)
n,ℓmℓms;rel

= − 1

8m3c2
〈ψnℓmℓms

|p2p2|ψnℓmℓ
〉 . (2.4.40)

We can use this formula because the uncoupled basis of states at fixed n is good: the
perturbation is diagonal in this basis. This is checked using Remark 3 in section 1.2.2. This
is clear because the perturbing operator p2p2 commutes with L2, with Lz, and with Sz.
The first operator guarantees that that the matrix for the perturbation is diagonal in ℓ, the
second guarantees that the perturbation is diagonal in mℓ, and the third guarantees, rather
trivially, that the perturbation is diagonal in ms.

To evaluate the matrix element we use the Hermiticity of p2 to move one of the factors
into the bra

E
(1)
n,ℓmℓms;rel

= − 1

8m3c2
〈p2ψnℓm|p2ψnℓm〉 , (2.4.41)

where in the right-hand side we evaluated the trivial expectation value for the spin degrees
of freedom. To simplify the evaluation we use the Schrödinger equation, which tells us that

( p2

2m
+ V

)
ψnℓm = E(0)

n ψnℓm → p2ψnℓm = 2m(E(0)
n − V )ψnℓm . (2.4.42)

Using this both for the bra and the ket:

E
(1)
n,ℓmℓms;rel

= − 1

2mc2

〈
(E(0)

n − V )ψnℓm

∣∣∣(E(0)
n − V )ψnℓm

〉
. (2.4.43)

The operator E
(0)
n − V is also Hermitian and can be moved from the bra to the ket, giving

E
(1)
n,ℓmℓms;rel

= − 1

2mc2

〈
ψnℓm

∣∣∣( (E(0)
n )2 − 2V E(0)

n + V 2)
∣∣∣ψnℓm

〉

= − 1

2mc2

[
(E(0)

n )2 − 2En〈V 〉nℓm + 〈V 2〉nℓm
]
.

(2.4.44)
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The problem has been reduced to the computation of the expectation value of V (r) and
V 2(r) in the ψnℓm state. The expectation value of V (r) is obtained from the virial theorem

that states that 〈V 〉 = 2E
(0)
n . For V 2(r) we have

〈V 2〉 = e4
〈 1

r2

〉
= e4

1

a20n
3
(
ℓ+ 1

2

) =

(
e2

2a0

1

n2

)2
4n

ℓ+ 1
2

= (E(0)
n )2 · 4n

ℓ+ 1
2

. (2.4.45)

Back into (2.4.44) we find

E
(1)
n,ℓmℓms;rel

= −(E
(0)
n )2

2mc2

[ 4n

ℓ+ 1
2

− 3
]

= −1
8 α

4 (mc
2)

n4

[ 4n

ℓ+ 1
2

− 3
]
. (2.4.46)

The complete degeneracy of ℓ multiplets for a given n has been broken. That degeneracy
of H(0) was explained by the conserved Runge-Lenz vector. It is clear that the relativistic
correction has broken that symmetry.

We have computed the above correction using the uncoupled basis

E
(1)
n,ℓmℓms;rel

= 〈nℓmms|δHrel|nℓmms〉 = f(n, ℓ) . (2.4.47)

Here we added the extra equality to emphasize that the matrix elements depend only on n
and ℓ. We have already seen that in the full degenerate subspace with principal quantum
number n the matrix for δHrel is diagonal in the uncoupled basis. But now we see that in
each degenerate subspace of fixed n and ℓ, δHrel is in fact a multiple of the identity matrix,
since the matrix elements are independent of m and ms (the Lz and Sz) eigenvalues. A
matrix equal to a multiple of the identity is invariant under any orthonormal change of
basis. For any ℓ⊗ 1

2 multiplet, the resulting j multiplets provide an alternative orthonormal
basis. The invariance of a matrix proportional to the identity implies that

E
(1)
nℓjmj ,rel

= 〈nℓjmj |δHrel|nℓjmj〉 = f(n, ℓ) . (2.4.48)

with the same function f(n, ℓ) as in (2.4.47), and the perturbation is diagonal in this coupled
basis too. This is clear anyway because the perturbation commutes with L2, J2 and Jz and
and any two degenerate states in the coupled basis differ either in ℓ, j or jz.

The preservation of the matrix elements can also be argued more explicitly. Indeed,
any state in the coupled basis is a superposition of orthonormal uncoupled basis states with
constant coefficients ci:

|nℓjmj〉 =
∑

i

ci|nℓmi
ℓm

i
s〉 , with

∑

i

|ci|2 = 1 , (2.4.49)

because the state on the left-hand side must also have unit norm. Therefore, using the
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diagonal nature of the matrix elements in the uncoupled basis we get, as claimed

〈nℓjmj |δHrel|nℓjmj〉 =
∑

i,k

c∗i ck〈nℓmi
ℓm

i
s|δHrel|nℓmk

ℓm
k
s〉

=
∑

i

|ci|2〈nℓmi
ℓm

i
s|δHrel|nℓmi

ℓm
i
s〉

=
∑

i

|ci|2f(n, ℓ) = f(n, ℓ) .

(2.4.50)

2.4.3 Spin orbit coupling

The spin-orbit contribution to the Hamiltonian is

δHspin-orbit =
e2

2m2c2
1

r3
S · L . (2.4.51)

Note that δHspin-orbit commutes with L2 because L2 commutes with any L̂i and any Ŝi.

Moreover, δHspin-orbit commutes with J2 and with Jz since, in fact, [Ĵi , S · L] = 0 for
any i; S · L is a scalar operator for J. It follows that δHspin-orbit is diagonal in the level
n degenerate subspace in the coupled basis |nℓjmj〉. In fact, as we will see, the matrix
elements are m-independent. This is a nontrivial consequence of δHspin-orbit being a scalar
under J. To compute the matrix elements we recall that J = S+ L and

E
(1)
nℓjmj ; spin-orbit

=
e2

2m2c2

〈
nℓjmj

∣∣∣
1

r3
S · L

∣∣∣nℓjmj

〉

=
e2

2m2c2
~
2

2

[
j(j + 1)− ℓ(ℓ+ 1)− 3

4

] 〈
nℓjmj

∣∣∣
1

r3

∣∣∣nℓjmj

〉
. (2.4.52)

We need the expectation value of 1/r3 in these states. It is known that

〈
nℓmℓ

∣∣∣
1

r3

∣∣∣nℓmℓ

〉
=

1

n3a30ℓ
(
ℓ+ 1

2

)
(ℓ+ 1)

. (2.4.53)

Because of themℓ independence of this expectation value (and its obviousms independence)
the operator 1/r3 is a multiple of the identity matrix in each ℓ⊗ 1

2 multiplet. It follows that
it is the same multiple of the identity in the coupled basis description. Therefore

〈
nℓjmj

∣∣∣
1

r3

∣∣∣nℓjmj

〉
=

1

n3a30ℓ
(
ℓ+ 1

2

)
(ℓ+ 1)

. (2.4.54)

Using this in (2.4.52)

E
(1)
nℓjmj ; spin-orbit

=
e2~2

4m2c2

[
j(j + 1)− ℓ(ℓ+ 1)− 3

4

]

n3a30ℓ
(
ℓ+ 1

2

)
(ℓ+ 1)

. (2.4.55)
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Working out the constants in terms of E
(0)
n and rest energies we get

E
(1)
nℓjmj ; spin-orbit

=
(E

(0)
n )2

mc2
n
[
j(j + 1)− ℓ(ℓ+ 1)− 3

4

]

ℓ
(
ℓ+ 1

2

)
(ℓ+ 1)

, ℓ 6= 0 . (2.4.56)

Since L vanishes identically acting on any ℓ = 0 state, it is physically reasonable, as we will
do, to assume that the spin-orbit correction vanishes for ℓ = 0 states. On the other hand
the limit of the above formula as ℓ → 0, while somewhat ambiguous, is nonzero. We set
j = ℓ+ 1

2 (the other possibility j = ℓ− 1
2 does not apply for ℓ = 0) and then take the limit

as ℓ→ 0. Indeed,

E
(1)
nℓjmj ; spin-orbit

∣∣∣
j=ℓ+ 1

2

=
(E

(0)
n )2

mc2
n
[
(ℓ+ 1

2)(ℓ+
3
2)− ℓ(ℓ+ 1)− 3

4

]

ℓ
(
ℓ+ 1

2

)
(ℓ+ 1)

=
(E

(0)
n )2

mc2
n(

ℓ+ 1
2

)
(ℓ+ 1)

,

(2.4.57)

and now taking the limit:

lim
ℓ→0

E
(1)
nℓjmj ; spin-orbit

∣∣∣
j=ℓ+ 1

2

=
(E

(0)
n )2

mc2
(2n) = α4mc2

1

2n3
. (2.4.58)

We see that this limit is in fact identical to the Darwin shift (2.4.24) of the nS states. This
is a bit surprising and will play a technical role below.

2.4.4 Combining results

For ℓ 6= 0 states we can add the energy shifts from spin-orbit and from the relativistic
correction, both of them expressed as expectation values in the coupled basis. The result,
therefore will give the shifts of the coupled states. Collecting our results (2.4.46) and (2.4.56)
we have

〈
nℓjmj

∣∣∣δHrel + δHspin-orbit

∣∣∣nℓjmj

〉

=
(E

(0)
n )2

2mc2

{
3− 4n(

ℓ+ 1
2

) +
2n
[
j(j + 1)− ℓ(ℓ+ 1)− 3

4

]

ℓ
(
ℓ+ 1

2

)
(ℓ+ 1)

}

=
(E

(0)
n )2

2mc2

{
3 + 2n

[
j(j + 1)− 3ℓ(ℓ+ 1)− 3

4

ℓ
(
ℓ+ 1

2

)
(ℓ+ 1)

]}
.

(2.4.59)

These are the fine structure energy shifts for all states in the spectrum of hydrogen. The
states in a coupled multiplet are characterized by ℓ, j and mj and each multiplet as a whole
is shifted according to the above formula. The degeneracy within the multiplet is unbroken
because the formula has no mj dependence. This formula, as written, hides some additional
degeneracies. We uncover those next.
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In the above formula there are two cases to consider for any fixed value of j: the multiplet
can have ℓ = j − 1

2 or the multiplet can have ℓ = j + 1
2 . We will now see something rather

surprising. In both of these cases the shift is the same, meaning that the shift is in fact ℓ
independent! It just depends on j. Call f(j, ℓ) the term in brackets above

f(j, ℓ) ≡ j(j + 1)− 3ℓ(ℓ+ 1)− 3
4

ℓ
(
ℓ+ 1

2

)
(ℓ+ 1)

. (2.4.60)

The evaluation of this expression in both cases gives the same result:

f(j, ℓ)
∣∣∣
ℓ=j− 1

2

=
j(j + 1)− 3(j − 1

2 )(j +
1
2)− 3

4(
j − 1

2

)
j
(
j + 1

2

) =
−2j2 + j

j
(
j − 1

2

) (
j + 1

2

) = − 2(
j + 1

2

) ,

f(j, ℓ)
∣∣∣
ℓ=j+ 1

2

=
j(j + 1)− 3(j + 1

2 )(j +
3
2)− 3

4(
j + 1

2

)
(j + 1)

(
j + 3

2

) =
2j2 − 5j − 3(

j + 1
2

)
(j + 1)

(
j + 3

2

) = − 2(
j + 1

2

) .

(2.4.61)

We can therefore replace in (2.4.59) the result of our evaluation, which we label as fine
structure (fs) shifts:

E
(1)
nℓj,mj;fs

= −(E
(0)
n )2

2mc2

[ 4n

j + 1
2

− 3
]

= −α4(mc2)
1

2n4

[ n

j + 1
2

− 3
4

]
. (2.4.62)

More briefly we can write

E
(1)
nℓj,mj ;fine

= −α4mc2 · Sn,j , with Sn,j ≡ 1

2n4

[ n

j + 1
2

− 3
4

]
. (2.4.63)

Let us consider a few remarks:

1. The dependence on j and absence of dependence on ℓ in the energy shifts could be
anticipated from the Dirac equation. The rotation generator that commutes with the
Dirac Hamiltonian is J = L+S, which simultaneously rotates position, momenta, and
spin states. Neither L nor S are separately conserved. With J a symmetry, states are
expected to be labelled by energy and j and must be mj independent.

2. The formula (2.4.63) works for nS states! For these ℓ = 0 states we were supposed
to add the relativistic correction and the Darwin correction, since their spin-orbit
correction is zero. But we noticed that the limit ℓ → 0 of the spin-orbit correction
reproduces the Darwin term. Whether or not this is a meaningful coincidence, it
means the sum performed above gives the right answer for ℓ → 0.

3. While a large amount of the degeneracy ofH(0) has been broken, for fixed n, multiplets
with the same value of j, regardless of ℓ, remain degenerate. The states in each j
multiplet do not split.
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4. Since Sn,j > 0 all energy shifts are down. Indeed

n

j + 1
2

≥ n

jmax +
1
2

=
n

ℓmax +
1
2 +

1
2

=
n

n
= 1 → n

j + 1
2

− 3
4 ≥ 1

4 . (2.4.64)

5. For a given fixed n, states with lower values of j get pushed further down. As n
increases splittings fall off like n−3.

A table of values of Sn,j is given here below

n j Sn,j

1 1
2

1
8

2 1
2

5
128

3
2

1
128

3 1
2

1
72

3
2

1
216

5
2

1
648

The energy diagram for states up to n = 3 is given here (not to scale)

S P D
ℓ = 0 ℓ = 1 ℓ = 2

...
...

...
...

n = 3

3D5/2
3P3/2 3D3/2

3S1/2 3P1/2

n = 2

2P3/2

2S1/2 2P1/2

n = 1

1S1/2

Fine Structure Spectrum
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For the record, the total energy of the hydrogen states is the zeroth contribution plus
the fine structure contribution. Together they give

Enℓjmj
= − e2

2a0

1

n2

[
1 +

α2

n2

( n

j + 1
2

− 3
4

)]
. (2.4.65)

This is the fine structure of hydrogen! There are, of course, finer corrections. The so-
called Lamb shift, for example, breaks the degeneracy between 2S1/2 and 2P1/2 and is of
order α5. There is also hyperfine splitting, which arises from the coupling of the magnetic
moment of the proton to the magnetic moment of the electron. Such coupling leads to a
splitting that is a factor me/mp smaller than fine structure.

2.5 Zeeman effect

In remarkable experiment done in 1896, the Dutch physicist Pieter Zeeman (1865-1943)
discovered that atomic spectral lines are split in the presence of an external magnetic field.
For this work Zeeman was awarded the Nobel Prize in 1902. The proper understanding of
this phenomenon had to wait for Quantum Mechanics.

The splitting of atomic energy levels by a constant, uniform, external magnetic field, the
Zeeman effect, has been used as a tool to measure inaccessible magnetic fields. In observing
the solar spectrum, a single atomic line, as seen from light emerging from outside a sunspot,
splits into various lines inside the sunspot. We have learned that magnetic fields inside a
sunspot typically reach 3, 000 gauss. Sunspots are a bit darker and have lower temperature
than the rest of the solar surface. They can last from hours to months, and their magnetic
energy can turn into powerful solar flares.

The external magnetic field interacts with the total magnetic moment of the electron.
The electron has magnetic moment due to its orbital angular momentum and one due to
its spin

µℓ = − e

2mc
L , µs = − e

mc
S , (2.5.1)

where we included the g = 2 factor in the spin contribution. The Zeeman Hamiltonian is
thus given by

δHZeeman = −(µℓ + µs) ·B =
e

2mc
(L+ 2S) ·B . (2.5.2)

Conventionally, we align the magnetic field with the positive z axis so that B = B z and
thus get

δHZeeman =
eB

2mc
(L̂z + 2Ŝz) . (2.5.3)

When we consider the Zeeman effect on Hydrogen we must not forget fine structure.
The full Hamiltonian to be considered is

H = H(0) + δHfs + δHZeeman . (2.5.4)
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Recall that in fine structure, there is an internal magnetic field Bint associated with spin-
orbit coupling. This is the magnetic field seen by the electron as it goes around the proton.
We have therefore two extreme possibilities concerning the external magnetic field B of the
Zeeman effect:

(1) Weak-field Zeeman effect: B ≪ Bint. In this case the Zeeman effect is small compared
with fine structure effects. Accordingly, the original Hamiltonian H(0) together with
the fine structure Hamiltonian Hfs are thought as the “known” Hamiltonian H̃(0), and
the Zeeman Hamiltonian is the perturbation:

H = H(0) + δHfs︸ ︷︷ ︸
H̃(0)

+δHZeeman . (2.5.5)

(2) Strong-field Zeeman effect: B ≫ Bint. In this case the Zeeman effect is much larger
than fine structure effects. Accordingly, the original Hamiltonian H(0) together with
the Zeeman Hamiltonian are thought as the “known” Hamiltonian Ȟ(0) and the fine
structure Hamiltonian Hfs is viewed as the perturbation:

H = H(0) + δHZeeman︸ ︷︷ ︸
Ȟ(0)

+δHfs . (2.5.6)

You may thing that H(0) + δHZeeman does not qualify as known, but happily, as we
will confirm soon, this is actually a very simple Hamiltonian.

When the Zeeman magnetic field is neither weak nor strong, we must take the sum
of the Zeeman and fine structure Hamiltonians as the perturbation. No simplification is
possible and one must diagonalize the perturbation.

Weak-field Zeeman effect. The approximate eigenstates of H̃(0) are the coupled states
|nℓjmj〉 that exhibit fine structure corrections and whose energies are a function of n and j,
as shown in the Fine Structure diagram. Degeneracies in this spectrum occur for different
values of ℓ and different values of mj .

To figure out the effect of the Zeeman interaction on this spectrum we consider the
matrix elements:

〈nℓjmj |δHZeeman|nℓ′jm′
j〉 . (2.5.7)

Since δHZeeman ∼ Lz + 2Sz we see that δHZeeman commutes with L2 and with Ĵz. The
matrix element thus vanishes unless ℓ′ = ℓ and m′

j = mj and the Zeeman perturbation is
diagonal in the degenerate fine structure eigenspaces. The energy corrections are therefore

E
(1)
nℓjmj

=
e~

2mc
B 〈nℓjmj |(L̂z + 2Ŝz)|nℓjmj〉

1

~
, (2.5.8)

where we multiplied and divided by ~ to make the units of the result manifest. The result
of the evaluation of the matrix element will show a remarkable feature: a linear dependence
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E(1) ∼ ~mj on the azimuthal quantum numbers. The states in each j multiplet split into
equally separated energy levels! We will try to understand this result as a property of
matrix elements of vector operators. First, however, note that L̂z + 2Ŝz = Ĵz + Ŝz and
therefore the matrix element of interest in the above equation satisfies

〈nℓjmj|(L̂z + 2Ŝz)|nℓjmj〉 = ~m+ 〈nℓjmj |Ŝz|nℓjmj〉 . (2.5.9)

It follows that we only need to concern ourselves with Ŝz matrix elements.
Let’s talk about vector operators. The operator V̂ is said to be a vector operator

under an angular momentum operator Ĵ if the following commutator holds for all values of
i, j = 1, 2, 3: [

Ĵi , V̂j
]

= i~ ǫijk V̂k . (2.5.10)

It follows from the familiar Ĵ commutators that Ĵ is a vector operator under Ĵ. Additionally,
if V̂ is a vector operator it has a standard commutation relation with Ĵ2 that can be quickly
confirmed:

[Ĵ2 , V̂] = 2i~
(
V̂ × Ĵ − i~ V̂

)
. (2.5.11)

If V̂ is chosen to be Ĵ the left-hand side vanishes by the standard property of Ĵ2 and the
right-hand side vanishes because the Ĵ commutation relations can be written as Ĵ×Ĵ = i~Ĵ.
Finally, by repeated use of the above identities you will show (homework) that the following
formula holds

1

(2i~)2

[
Ĵ2 , [Ĵ2 , V̂]

]
= (V̂ · Ĵ) Ĵ − 1

2

(
Ĵ2 V̂ + V̂ Ĵ2

)
. (2.5.12)

Consider (Ĵ2, Ĵz) eigenstates |k; jmj〉 where k stands for other quantum number that bear
no relation to angular momentum. The matrix elements of the left-hand side of (2.5.12) on
such eigenstates is necessarily zero:

〈k′; jm′
j |
[
Ĵ2 , [Ĵ2 , V̂]

]
|k; jmj〉 = 0 , (2.5.13)

as can be seen by expanding the outer commutator and noticing that Ĵ2 gives the same
eigenvalue when acting on the bra and on the ket. Therefore the matrix elements of the
right-hand side gives

〈k′; jm′
j |(V̂ · Ĵ) Ĵ|k; jmj〉 = ~

2 j(j + 1) 〈k′; jm′
j |V̂|k; jmj〉 , (2.5.14)

which implies that

〈k′; jm′
j |V̂|k; jmj〉 =

〈k′; jm′
j |(V̂ · Ĵ) Ĵ|k; jmj〉
~2 j(j + 1)

. (2.5.15)

This is the main identity we wanted to establish. Using the less explicit notation 〈· · · 〉 for
the matrix elements we have found that

〈V̂〉 =
〈(V̂ · Ĵ) Ĵ 〉

〈Ĵ2〉
. (2.5.16)
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This is sometimes called the projection lemma: the matrix elements of a vector operator V̂
are those of the conventional projection of V̂ onto Ĵ. Recall that the projection of a vector
v along the vector j is (v · j)j/j2.

Let us now return to the question of interest; the computation of the the expectation
value of Ŝz in (2.5.20). Since Ŝ is a vector operator under Ĵ we can use (2.5.15). Specializing
to the z-component

〈nℓ jmj |Ŝz|nℓ jmj〉 =
~mj 〈nℓ jmj |Ŝ · Ĵ |nℓ jmj〉

~2 j(j + 1)
. (2.5.17)

We already see the appearance of the predicted ~mj factor. The matrix element in the

numerator is still to be calculated but it will introduce no mj dependence. In fact Ŝ · Ĵ is a
scalar operator (it commutes with all Ĵi) and therefore it is diagonal in mj . But even more
is true; the expectation value of a scalar operator is in fact independent of mj ! We will not

show this here, but will just confirm it by direct computation. Since L̂ = Ĵ− Ŝ we have

Ŝ · Ĵ = 1
2

(
Ĵ2 + Ŝ2 − L̂2

)
, (2.5.18)

and therefore

〈nℓ jmj |Ŝz|nℓ jmj〉 =
~mj

2j(j + 1)

(
j(j + 1)− ℓ(ℓ+ 1) + 3

4

)
. (2.5.19)

Indeed, no further mj dependence has appeared. Back now to (2.5.20) we get

〈nℓjmj|(L̂z + 2Ŝz)|nℓjmj〉 = ~mj

(
1 +

j(j + 1)− ℓ(ℓ+ 1) + 3
4

2j(j + 1)

)
. (2.5.20)

The constant of proportionality in parenthesis is called the Lande g-factor gJ(ℓ):

gJ(ℓ) ≡ 1 +
j(j + 1)− ℓ(ℓ+ 1) + 3

4

2j(j + 1)
(2.5.21)

We finally have for the Zeeman energy shifts in (2.5.8)

E
(1)
nℓjmj

=
e~

2mc
B gJ(ℓ)mj . (2.5.22)

Here the Bohr magneton e~
2mc ≃ 5.79× 10−9eV/gauss. This is our final result for the weak-

field Zeeman energy corrections to the fine structure energy levels. Since all degeneracies
within j multiplets are broken and j multiplets with different ℓ split differently due to the
ℓ dependence of gJ (ℓ), the weak-field Zeeman effect removes all degeneracies!

Strong-field Zeeman effect. We mentioned earlier that when the Zeeman effect is larger
than the fine structure corrections we must take the original hydrogen Hamiltonian together
with the Zeeman Hamiltonian to form the ‘known’ Hamiltonian Ȟ(0):

Ȟ(0) = H(0) +
e

2mc
(L̂z + 2Ŝz)B . (2.5.23)
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Actually Ȟ(0) is simple because the Zeeman Hamiltonian commutes with the zero-th order
hydrogen Hamiltonian [

L̂z + 2Ŝz , H
(0)
]

= 0 . (2.5.24)

We can thus find eigenstates of both simultaneously. Those are in fact the uncoupled basis
states! We have

H(0)|nℓmℓms〉 = E(0)
n |nℓmℓms〉

(L̂z + 2Ŝz)|nℓmℓms〉 = ~(mℓ + 2ms)|nℓmℓms〉 .
(2.5.25)

and therefore the uncoupled basis states are the exact energy eigenstates of Ȟ(0) and have
energies

Enℓmℓms
= E(0)

n +
e~

2mc
B(mℓ + 2ms) . (2.5.26)

Some of the degeneracy of H(0) has been removed, but some remains. For a fixed principal
quantum number n there are degeneracies among ℓ⊗ 1

2 states and degeneracies among such
multiplets with ℓ and ℓ′ different. This is illustrated in Figure 2.2.

Figure 2.2: Illustrating the degeneracies remaining for ℓ = 0 and ℓ = 1 after the inclusion of Zeeman
term in the Hamiltonian. Accounting for the spin of the electron there two degenerate states in the
ℓ = 1 multiplet 1 ⊗ 1

2 and each of the two states in the ℓ = 0 multiplet 0 ⊗ 1
2 is degenerate with a

state in the ℓ = 1 multiplet.

The problem now is to compute the corrections due to δHfs on the non-degenerate and
on the degenerate subspaces of Ȟ(0). The non-degenerate cases are straightforward, but
the degenerate cases could involve diagonalization. We must therefore consider the matrix
elements

〈nℓ′m′
ℓm

′
s| δHfs|nℓmℓms〉 , (2.5.27)

with the condition
m′

ℓ + 2m′
s = mℓ + 2ms , (2.5.28)
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needed for the two states in the matrix element to belong to a degenerate subspace. Since
L̂2 commutes with δHfs the matrix elements vanish unless ℓ = ℓ′ and therefore it suffices to
consider the matrix elements

〈nℓ′m′
ℓm

′
s| δHfs|nℓmℓms〉 , (2.5.29)

still with condition (2.5.28). Ignoring ℓ = 0 states, we have to re-examine the relativistic
correction and spin orbit. The relativistic correction was computed in the uncoupled basis
and one can use the result because the states are unchanged and the perturbation was
shown to be diagonal in this basis. For spin-orbit the calculation was done in the coupled
basis because spin-orbit is not diagonal in the original H(0) degenerate spaces using the
uncoupled basis. But happily, it turns out that spin-orbit is diagonal in the more limited
degenerate subspaces obtained after the Zeeman effect is included. All these matters are
explored in the homework.
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