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then we may move all usoft wilson lines into the usoft part of the operator yielding  

1,5 (c) 1,5 (d)
Q = [h Γ Y T aY †h(b)] [ξ W ΓlC8(P+)T aW †ξ(u)]. (11.8)8 v h v n,p n,p

Matching this SCETI result onto SCETII by the replacements Y → S and ξ(0) → ξ, W (0) → W , we have 

1,5 (c) 1,5h(b)
(d)

Q = [h Γ ] [ξ W ΓlC0(P+)W †ξ(u)]0 v h v n,p n,p (11.9) 
1,5 (c) 1,5 (d)

Q8 = [hv Γh Y T aY †h(v
b)] [ξn,p W ΓlC8(P+)T aW †ξ(u)]. (11.10)n,p

Now, taking the matrix elements between the appropriate hadronic states we have

We are able to achieve this factorization because with B, D purely soft and π purely collinear there are 
no contractions between soft and collinear fields. So we find that our final factorization result is 

where ξ(ω0, µ) is the Isgur-Wise function at maximum recoil and 

2 2 
ω0 = 

mB − mD (11.14)
2mB 

This result also applies to other B decays such as 

0 0 0 
B → D+π− , B → D∗+π− , B → D+ρ− 

− 0 
B → D0π− , B− → D∗0π− , B → D+ρ− 

11.3 Massive Gauge Boson Form Factor & Rapidity Divergences 

11.4 pT Distribution for Higgs Production & Jet Broadening 

12 More SCETI Applications 

(ROUGH) 
In this section we will apply the SCET formalism developed in previous sections to a few additional 

processes that either use SCETI or a combination of both SCETI and SCETII (where the more complicated 
part of the factorization occurs within SCETI). In particular we will consider 

• B → Xsγ 

• Drell-Yan pp → l+l−X: inclusive, endpoint, and isolated factorization theorems 
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〈
πn
−∣∣ ξnWΓC0(

iP+)W †ξn |0〉 =
1

fπEπ
2

∫
dxC(2Eπ(2x

0
− 1))φπ(x) (11.11)〈

Dv′πn
−∣∣hv′Γhv |B〉 = N ′ξ(ω0, µ). (11.12)

1

〈πD|HW |B〉 = iNξ(ω0, µ)

∫
C(2Eπ(2x

0
− 1), µ)φπ(x, µ) +O(Λ/Q) (11.13)
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12.1 B → Xsγ 

(ROUGH) In this section we treat the incluzive weak radiative decay B → Xsγ. This decay is defined 
by the effective Hamiltonian 

4GF e H = − √ VtbVts
∗ C7O7, O7 = mbsσµν F µν PRb (12.1)

2 16π2 

1with F µν the electromagnetic field tensor and PR = (1 + γ5). The decay is defined such that the photon 2 
momentum is opposite the collinear jet i.e. qµ = Eγ n̄µ. 

The photon energy spectrum of the decay is 

Is the forward scattering amplitude with EM current Jµ = siσµν q
ν PRb. 

We will consider the endpoint region of the decay in which nearly all of the final state energy is in the 
photon. Analyzing this process in the rest frame of B, we find that the final momentum X 

µ µ µp = pB − q (12.4)X 
µ= 

mb 
(nµ + n̄µ) − Eγ n̄ (12.5)

2 
µ µn̄ n̄

= mb + (mb − 2Eγ ). (12.6)
2 2 

Defining our endpoint region by 
mb − Eγ ≤ ΛQCD (12.7)
2 

gives us a mass squared scale of 
2 2 2 pX c mbΛ = m 

Λ
= mb λ

2 (12.8)b mb 

where in the last line we took  Taking mb as Q it is clear that this process is described by SCETI. 
Specifically, X will be represented by collinear gluons and quarks while B will be represented by heavy 
(usoft) quark. Our principal goal is to demonstrate how the effects of momentum scales are factorized in 
the formula for the photon energy spectrum. To this end we will prove that (12.2) can be factorized as 

where H(mb, µ) is a calculable quantity arising from hard scale dynamics; S(k+, µ) is a non-perturbative 
soft function; and J(k+) represents collinear gluons and quarks and is called the jet function. 

We begin by matching the QCD current onto SCET to obtain 

i(P n 
Jµ = −Eγ e 2 +P⊥−mbv)·xC(P, µ)ξn,pWγµ 

⊥PLhv (12.10) 

= −Eγ C(mb, µ)ξn,pWγµ 
⊥PLhv (12.11) 
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1 dΓ

Γ0

4Eγ
=

dEγ

1

m3
b

(
− Im
π

)
T (Eγ) (12.2)

where
i

T (Eγ) = d
mb

∫
4x e−iqx

〈
Bv

∣∣TJ†µ(x)Jµ(0)
∣∣Bv

〉
(12.3)

=
√

Λ .mb

1 dΓ

Γ0

Λ

= H(mb, µ)

∫
dk+ S(k+, µ)J(k+ +mb − 2Eγ , µ) (12.9)

dEγ 2Eγ−mb

λ
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where in the second line we used the label momentum conservation to set P = mb and P⊥ = 0. Inserting 
this result into (12.3), we may write 

4Eγ 
3 T (Eγ ) ≡ H(mb, µ)Teff(Eγ , µ) (12.12) 

mb 

where 

This gives us a hard amplitude of 

4Eγ 
3 

H(mb, µ) = |C(mb, µ)|2 . (12.14)3mb 

Next, we decouple usoft gluons from collinear fields by implementing the standard field redefinitions 

→ Y ξ(0) W → Y W (0)Y †ξn,p n,p (12.15) 

thus giving us a new effective current: 

Jµ (0)
W (0)γ⊥ = ξ PLY †hv. (12.16)eff n µ 

Substituting this result into (12.13) gives us 

with the label P representing the sum of the label momentum carried by the collinear fields. (Additional 
Derivation)? Now, noting that JP only depends on the k+ component of residual momentum k, we may 
do the k− and k+ integrals thus putting x on the light cone 
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where

Teff = i

∫
d4x ei(m

n̄
b q

2
− )·x 〈 µBv

∣∣TJ (x)Jeff µ eff

∣∣Bv

〉
. (12.13)

Teff = i

∫
d4x ei(m

n̄
b 2
−q)·x 〈Bv

∣∣T[hvY PRγ
⊥
µW

(0)†ξ(0)
n,p](x)[ξ

(0)
n,pW

(0)γµ⊥PLY
†hv](0)

∣∣Bv

〉
(12.17)

= −
∫
d4x

∫
d4k

(2π)4
ei(mb

n̄
2
−q−k)·x 〈Bv

∣∣T[hvY ](x)PRγ
⊥
µ
/n

2
γµ⊥PL[Y †hv](0)

∣∣Bv

〉
JP (k) (12.18)

1
=

d
d

2

∫
4x

∫ 4k

(2π)4
ei(mb

n̄
2
−q−k)·x 〈Bv

∣∣T[hvY ](x)[Y †hv](0)
∣∣Bv

〉
JP (k), (12.19)

where we defined

i

∫
d4k

(2π)4
〈0|T[W (0)†ξ(0)

n,p](x)[
(0)
ξn,pW

(0)](0) |0〉 (12.20)

1
Teff =

2

∫
d4x ei(mb

n̄
2
−q)·xδ(x+)δ(x⊥)

∫
dk⊥
2π

e−
i
2
k+x−

〈
Bv

∣∣T[hvY ](x)[Y †hv](0)
∣∣Bv

〉
JP (k+)

1
=

dx
dk

2

∫
+JP (k+)

∫ −

4π
e−

i
2

(2Eγ−mb+k+)x−
〈
Bv

∣∣T[hvY ]
(n

2
x−
)

[Y †hv](0)
∣∣Bv

〉
. (12.21)
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Focusing on the heavy fields, we may then define  

The Soft function S(k+) is non-perturbative and encodes information about the usoft dynamics of the 
B meson. (12.22) shows that we may interpret this result as giving the probability of finding a heavy 
quark b inside the B meson carrying a residual momentum of k+ . Defining J(k+) = − 1 ImJP (k

+) and π 
using(12.12),(12.21), (12.22) in (12.2), we have the final result 

12.2 Drell-Yan: pp → Xl+l− 

(ROUGH) Our final example will be the Drell-Yan (DY) process pp̄ → Xl+l− . This is a protype LHC 
process. The kinematics of this process can be described by the following set of equations. 

And the analogs of the Bjorken Variables from DIS: 

xa ≡
√ 
τeY , xb ≡

√ 
τe−Y ,	 (12.30) 

where τ ≤ xa,b ≤ 1. We study this process int three distinct energy regions 

2·Inclusive: τ ∼ 1 p ∼ q2 ∼ E2 
x cm xa, b ∼ 1, ξa, b ∼ 1 

2·Endpoint: τ → 1 p << q2 → E2	 (12.31)x cm xa, b → 1, ξa, b → 1 
2·Isolated: τ → 0 p >> q2 xa, b → 0, ξa, b → 0x 

We now analyze these specific processes in detail.  
Inclusive In this case this process represents an SCETI problem of hard-collinear factorization. we have  
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1
S(k+) ≡ dx

2

∫ −
i

e−
4π

l+x
2

− 〈
Bv

∣∣T[
n

hvY ]( x−)[Y †hv](0)
2

∣∣Bv

〉
(12.22)

1
=

dx

2

∫ −

4π
e−

i
2
l+x−

〈
Bv

∣∣Tex− n2 ·∂ [hvY ](0)[Y †hv](0)
∣∣Bv

1
=

〉
dx

2

∫ −

4π
e−

i
2
l+x−

〈
Bv

∣∣T[hvY ](0)e−x
− n

2
·∂ [Y †hv](0)

∣∣Bv

1
=

〉
dx

2

∫ −

4π
e−

i
2
l+x−

〈
Bv

∣∣ThvY e ix−2 n·∂Y †hv
∣∣Bv

1
=

〉
2

∫
dx−

4π
e−

i
2
l+x−

〈
Bv

∣∣Thveix−2 (in·Dus)hv
∣∣Bv

1
=

〉
2

〈
Bv

∣∣hvδ(in ·Dus − l†)hv
∣∣Bv

〉
. (12.23)

1 dΓ
= H(mb, µ)

∫ Λ

dl+ S(l+) J(l+ +mb − 2Eγ)
Γ0 dEγ 2Eγ−mb

p2∼m2 Hard p2∼Λ2 Usoft p2
b ∼mbΛ Collinear

︸ ︷︷ ︸ ︸ ︷︷ ︸ ︸ ︷︷ ︸ (12.24)

pA + pB = pX + q (12.25)

E2
cm = (pA + pB)2 Collision Energy (12.26)

q2 : Hard scale of the problem (12.27)

τ ≡ q2/E2
cm ≤ 1 (12.28)

1
Y =

p
ln

2

(
b · q
pa · q

)
Total lepton rapidity (angular variable) (12.29)
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a 4-quark operator in SCET, which after a Fierz Identity becomes,  

n̄/	 n/ †[(ξ̄nWn) (Wn
†ξn)][(ξ̄n̄Wn̄) (Wn̄ξn̄)]	 (12.32)

2	 2 

Remarks: 

•	 T A ⊗ T A octet structure vanishes under (pn| | · | |pn) 

•	 When we take ξn → Ynξn for coupling to soft gluons, the soft wilson lines cancel out. 

•	 This operator encodes information about the PDF because both 

n̄/	 n/(pn| |χn,ω ) and (p¯ | |χ¯ χ¯ n)	 (12.33)χn,ω | |pn n n,ω n,ω | |p¯
2 2 

are defined as PDFs. These PDFs contribute to the differential cross section for this process: 

•	 As a last important caveat, we not that Glauber Gluons cancel out at leadind order. However, 
proving this result is out of the scope of our current discussion. 

Threshold Limit In the threshold limit only the terms of Hij 
incl most singular in 1 − τ contribute. 

where i, j = u¯ d, . . ..u, d ̄ The interpretation when we take ξa,b → 1 is that one parton in each proton carries 
all the momentum. This is not the dominant LHC region.  
Isolated DY The isolated case of DY allows forward jets to carry away part of Ecm, so ξa,b → 1. It  
also restricts thr central region to still only have soft radiation (the signal region is background free).  
To guarantee this requires an experimental observation. Observable: pX = Ba + Bb. There are two  
hemispheres perpendicular to the beam axis.  

We expect the plus momenta for n- collinear radiation to be small. We find that this is indeed the case 
becuase 

B+ ≤ Qe−2Y ωt << Q (12.39)a 

and there is an identical expression for B+ . For the n-collinear proton (a) and jet (a), we do not merely b 
get a PDF from the hard-collinear-soft factorization. We get something new called a beam function. The 
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1 dσ

σ0

1

=
dq2dY

∑
i,j

∫
dξa

xa

1

ξa

∫
dξb

xb

x
H incl

ξ ij
b

(
a xb
,

ξa
, q2, µ fi(ξa, µ)fj(ξb, µ) (12.34)

ξb

)

=

[
1 +O

(
ΛQCD√

q2

)]
. (12.35)

H incl
ij → Sthr

qq̄

[√ τ
q2

(
1− ,

qaqb

)
µ

]
Hij(q

2, µ) [1 +O(1− τ)] (12.36)

B+
a = na ·Ba =

∑
na · pk (12.37)∑ kεa

= Ek(1 + tanhYk)e
−2Yk (12.38)

kεa
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