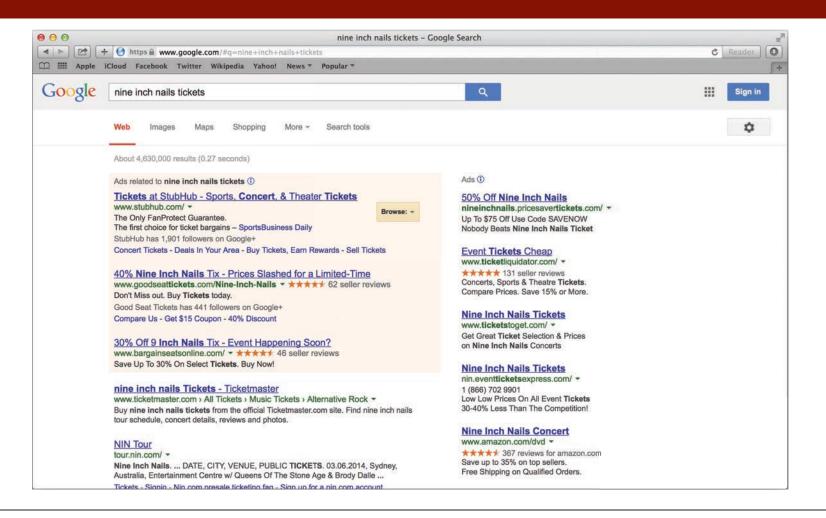



GOOGLE ADWORDS Optimizing Online Advertising

15.071x – The Analytics Edge

Google Inc.

- Provides products and services related to the Internet
 - Mission: "... to organize the world's information and make it universally accessible and useful."
- Most widely known for its search engine (www.google.com)
 - User enters a query; Google returns links to websites that best fit query


History of Google

- 1996 Sergei Brin and Larry Page, graduate students at Stanford, working on a research project
 - How to measure importance of any webpage using links on the internet
- 1998 Incorporated Google as a company and received first funding; database of 60 million webpages
- 2004 Initial Public Offering
- 2007 Google acquires YouTube and other companies
- 2013 More than 1 billion unique monthly visitors

Google's Business Model

- Google search engine is free to use, so how does Google make money?
- Answer: online advertising

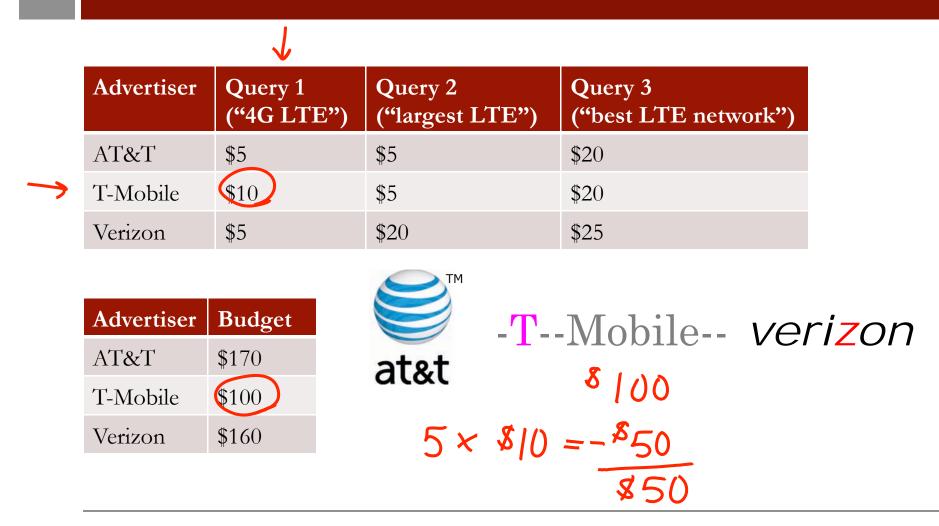
Example of Sponsored Ads

15.071x - Google AdWords: Linear Optimization Recitation

Screen shot © Google. All rights reserved. This content is excluded from our Creative Commons license. For more information, see https://ocw.mit.edu/help/faq-fair-use/.

Google Advertising - AdWords

- Why do companies advertise on Google?
 - Google receives heavy traffic
 - Search pages are formatted in a very clean way
 - Companies can choose which types of queries their ads will be displayed for; better targeting
- 97% of Google's revenues come from AdWords


How does Advertising on Google work?

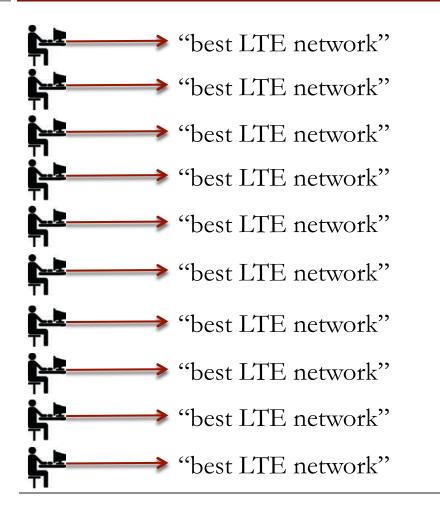
- 1. Advertisers place bids for different queries in an auction
- 2. Based on bids and *quality score* (fit of advertiser and ad to the queries), Google decides price-per-click of each advertiser and each query
- 3. Google then decides how often to display each ad for each query

Price-per-click (PPC)

- For each query, Google decides each advertiser's price-per-click (PPC)
 - How much advertiser pays Google when user clicks ad for that query
- Each advertiser also specifies a **budget**
 - Each time user clicks on advertiser's ad, budget is depleted by PPC amount

Example of price-per-click

Click-through Rate (CTR)

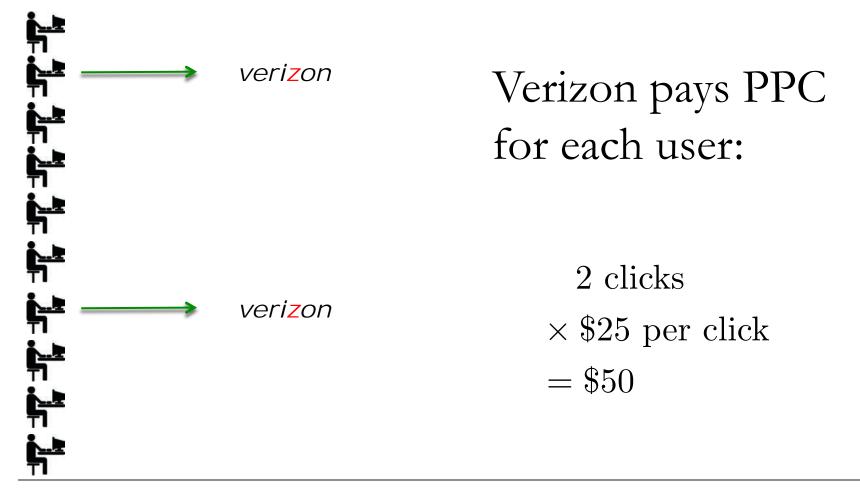

- Advertiser only pays Google if the user *clicks* on the ad
- The probability that a user clicks on an advertiser's ad is the **click-through rate (CTR)**
 - Can also think of as "clicks per user"

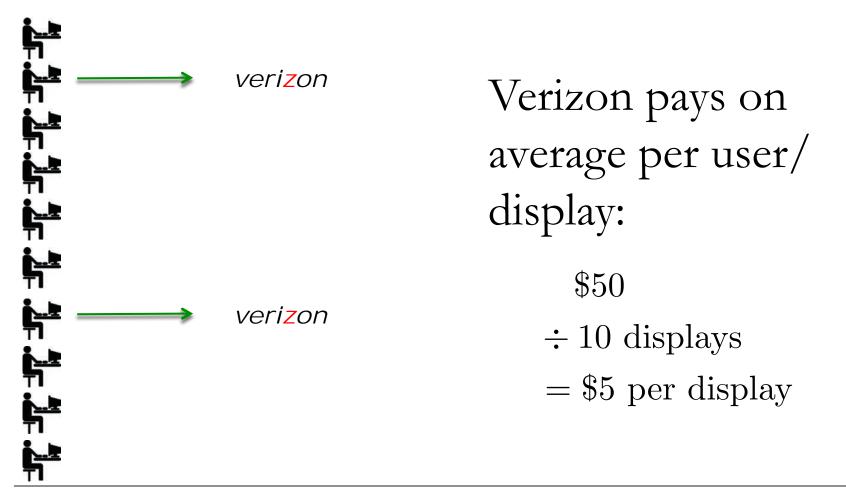
Example of click-through rate

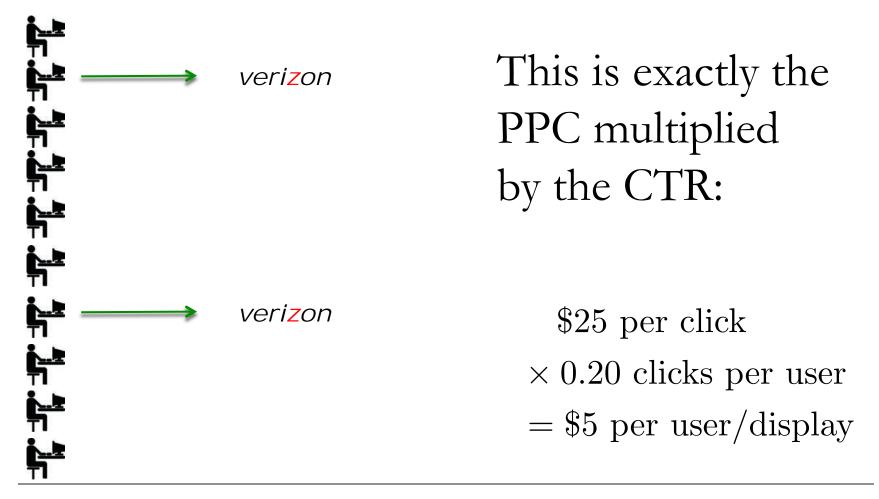
Advertiser	Query 1 ("4G LTE")	Query 2 ("largest LTE")	Query 3 ("best LTE network")
AT&T	0.10	0.10	0.08
T-Mobile	0.10	0.15	0.10
Verizon	0.10	0.20	0.20
$50 \text{ users} \times 0.08 = 4 \text{ users}$ 100 users $\times 0.08 = 8 \text{ users}$			

Average Price Per Display

• Average amount that an advertiser pays each time its ad is shown is **PPC x CTR**




Suppose 10 users search for "best LTE network"



≜_ ₽	verizon
	veri <mark>z</mark> on
	verizon
	veri <mark>z</mark> on
	veri <mark>z</mark> on
 _ ⊤1	verizon
È ∎ →	verizon
È } ⊤1	verizon
	verizon
	verizon

CTR of Verizon and "best LTE network" is 0.2, so only 2 users click on the ad

Average price per display for example

Advertiser	Query 1 PPC ("4G LTE")	Query 2 PPC ("largest LTE")	Query 3 PPC ("best LTE network")
AT&T	\$5	\$5	\$20
T-Mobile	\$10	\$5	\$20
Verizon	\$5	\$20	\$25

Advertiser	Query 1 CTR ("4G LTE")	Query 2 CTR ("largest LTE")	Query 3 CTR ("best LTE network")
AT&T	0.10	0.10	0.08
T-Mobile	0.10	0.15	0.10
Verizon	0.10	0.20	0.20

Average price per display for example

Advertiser	Query 1 APPD ("4G LTE")	Query 2 APPD ("largest LTE")	Query 3 APPD ("best LTE network")
AT&T	\$0.50	\$0.50	\$1.60
T-Mobile	\$1.00	\$0.75	\$2.00
Verizon	\$0.50	\$4.00	\$5.00

Query estimates

- Google does not control how many times a query will be requested driven by users!
- For each query, Google has estimate of number of times query will be requested over a given day

Example of query estimates

Query	Est. # of Requests
"4G LTE"	140
"largest LTE"	80
"best LTE network"	80

Google's problem

• How many times to display each ad for each query to maximize revenue

Google's problem

- Objective:
 - Maximize revenue
- Decision:
 - For each advertiser and query, number of times ad will be displayed for that query
- Constraints:
 - Average amount paid by each advertiser cannot exceed budget
 - Total ads for given query cannot exceed estimated number of requests for that query

Problem data

Advertiser	Avg. \$ / Query 1 Ad Display	Avg. \$ / Query 2 Ad Display	Avg. \$ / Query 3 Ad Display
AT&T	\$0.50	\$0.50	\$1.60
T-Mobile	\$1.00	\$0.75	\$2. 00
Verizon	\$0.50	\$4.00	\$5.00

Advertiser	Budget
AT&T	\$170
T-Mobile	\$100
Verizon	\$16 0

Query	Est. # of Requests
Q1 ("4G LTE")	140
Q2 ("largest LTE")	80
Q3 ("best LTE network")	80

Modeling the problem

• Decision variables:

 $\chi_{A1} \chi_{A2} \chi_{A3} \chi_{T1} \chi_{T2} \chi_{T3} \chi_{V1} \chi_{V2} \chi_{V3}$

• Revenue to Google under ad strategy: $0.50 \times_{A1} + 0.50 \times_{A2} + 1.60 \times_{A3} + 1.00 \times_{T1} + ... + 5.00 \times_{V3}$

• Amount advertiser AT&T pays in ad strategy: $0.50 \times_{A1} + 0.50 \times_{A2} + 1.60 \times_{A3} \leq 170$

• Number of times ad strategy uses query 2:

 $X_{A2} + X_{T2} + X_{V2} \le 80$

Extensions to the problem

- Slates/positions
- Personalization
- Other issues
 - Estimating CTRs
 - How should advertisers bid?

Slates/positions

- Search result page has space for more than one ad
- Slate: combination of ads
- Many possible slates: which ones to display?

Xadvertiser, query XAI XTI XVI Xslate, query XATI XAVI XTV

Personalization

- In addition to the query, Google can use other information to decide which ad to display:
 - IP address/geographic location
 - Previous Google searches/browser activity on Google
- How do we account for this?

X advertiser, query XAIPI X advertiser, query, User profile P1 P2 P3

AdWords at Google's scale

- We studied a small instance of the ad allocation problem
 - 3 bidders, 3 queries
- We saw how an optimization solution increases revenue by 16% over "common-sense" solution
- In reality, problem is *much* larger
 - Hundreds to thousands of bidders, over \$40 billion
 - Gains from optimization at this scale become *enormous*

MIT OpenCourseWare <u>https://ocw.mit.edu/</u>

15.071 Analytics Edge Spring 2017

For information about citing these materials or our Terms of Use, visit: <u>https://ocw.mit.edu/terms</u>.