Order Full Rate, Leadtime Variability, and Advance Demand Information in an Assemble-To-Order System

by Lu, Song, and Yao (2002)

Presented by Ping Xu

This summar y presentation is based on: Lu, Yingdong, and Jing-Sheng Song. "Order-Based Cost Optimization in Assemble-to-Order Systems." To ap p ear in *Operations Research***, 2003.**

7/6/2004 Ping Xu 1

Preview

- • Assembly-to-order system
	- Each product is assembled from a set of components,
	- –Demand for products following batch Poisson processes,
	- –Inventory of each component follows a base-stock policy
	- –Replenishment leadtime *i.i.d.* random variables for each component.
- •• Model as a $M^x/G/\infty$ queue, driven by a common multiclass batch Poisson input stream
	- –Derive the joint queue-length distribution,
	- –Order fulfillment performance measure.

Model

- \bullet *M* different components, and $F = \{1, 2, ..., m\}$ are the component indices.
- \bullet • Customer orders arrive as a stationary Poisson process, $\{A(t), t=0\}$, with rate λ .
- • Order type *K*: it contains positive units of component in *K* and 0 units in *F\K*.
	- $-$ An order is of type *K* with probability q^k , $\sum_{K} q^{K} = 1$
	- Type K order stream forms a compound Poisson process with rate *K* Q^K = $q^K\lambda$ () Q^K units for each component *j,* $Q_K = (Q^K_j, j \in K)$ has
	- $-$ A type-K order has \mathcal{Q}_j^+ units for each component j , $\mathcal{Q}_K \equiv (\mathcal{Q}_j, j \in K)$ has a known discrete distribution.
- •For each component *i*, the demand process forms a compound Poisson process.

Model

- •Demand are filled on a FCFS basis.
- • Demand are backlogged (if one or more components are missing), and are filled on a FCFS basis.
- • Inventory of each component is controlled by an independent base-stock policy,
	- Where s_i is the base-stock level for component i
	- For each component *i*, replenishment leadtimes, L_i , are *i.i.d*., with a cdf of G_i
	- $-$ Net inventory at time t , $I_i(t) = s_i X_i(t)$, $i = 1,... m$, where $X_i(t)$ is the number of outstanding orders of component *i* at time *t*.
- • Immediate availability of all components needed for an arriving demand as the "off-the-shelf" fill rate.
	- – $-$ Off-the-shelf fill rate of component *i*, $f_i = P[X_i + Q_i \leq s_i]$
	- – $-$ Off-the-shelf fill rate of demand type K, $f^{K} = P[X_{i} + Q_{i}^{K} \leq s_{i}, \forall i \in K]$
	- – $-$ Average (over all demand types) off-the-shelf fill rate, $f = \sum q^K f^K$

K

Performance Analysis

•• Derive the joint distribution and steady state limit of vector $\;X(t)\!=\!(X^{\vphantom{\dagger}}_1(t),\ldots,X^{\vphantom{\dagger}}_m(t))\;$

> (See "Suppliers/Arrivals Replenishment Orders" diagram in Lu, Song, and Yao paper)

- –Each component i, the number of outstanding orders is exactly the number of jobs i n servi ce in an $M_i^{\mathcal{Q}_i}$ / G_i / ∞ $\,$ queue with Poisson arrival $\, \lambda_i^{}\, \,$ and batch size $\, Q_i^{}\,$
- –The *m* queues are not independent.
- $-$ Given the number of demand arrivals up to t, the $X_{i}(t)s$ are independent of one another.

Performance Analysis

- •• Proposition 1: $X(t) = (X_1(t),...,X_m(t))$ has a limiting distribution. Derive the generating function of *X*.
- •• In the special case of unit arrival, $|Q_i|\equiv 1$, the generating function of X corresponds to a multivariate Poisson distribution. For each *i*, $\,X_{_{i}}\,$ is a Poisson variable with parameter $\,$ $\lambda_i \ell_i = (\sum_{K \in \mathfrak{R}_i} \lambda^K) \ell_i$
- • The correlation of the queue is solely induced by the common arrivals. If the proportion of the demand types that require both *i* and *j* are very small, the correlation between $X_{\scriptscriptstyle\! f}$ and $X_{\scriptscriptstyle\! f}$ is ne gligible.
- •Level of correlation is independent of the demand rate.
- • Reducing the variability of leadtime or batch sizes will result in a higher correlation among the queue lengths of outstanding jobs.

Response-time-based order fill rate

1) $f^K(w)$ is the probability of having all the components ready within w units of time.

2)
$$
D_i(t, t+u) := D_i(t+u) - D_i(t)
$$

3) Total number of departures from queue *i* in $(\tau, \tau + w) = X_i(\tau) + D_i(\tau, \tau + w) - X_i(\tau + w)$

4)
$$
I_i(\tau) + \{X_i(\tau) + D_i(\tau, \tau + w) - X_i(\tau + w)\} \ge 0
$$

5)
$$
X_i(\tau + w) - D_i(\tau, \tau + w) \leq s_i, i \in K
$$

6)
$$
X_i(\tau + w) = X_i^w(\tau) + \sum_{n=1}^{Q_i^k} 1\{L_i^n > w\} + X_i(\tau, \tau + w)
$$

7) Demand at
$$
\tau
$$
 can be supplied by $\tau + w$ iff
\n
$$
X_i^w(\tau) + X_i(\tau, \tau + w) - D_i(\tau, \tau + w) \leq s_i - \sum_{n=1}^{Q_i^K} 1\{L_i^w > w\}, \quad i \in K
$$
\n
$$
Y_i := X_i^w - Y_i^w
$$
\n
$$
\downarrow
$$
\n $$

8) Order fill rate of type-K demand within time window *w*, 9) Mean: 1 $(w) = P | Y_i + \sum_{i} 1\{L_i^n > w\} \leq s_i,$ $\left| Y_i \right| = P \mid Y_i + \sum_{i=1}^{Q_i^K} 1 \{ L_i^n > w \} \leq s_i$ *n* $f^{\wedge}(w) = P \left| X_i + \sum_{i=1}^{n} \left| \{L_i^n > w \} \leq s_i, \ \forall i \right| \right.$ = *K* ⎤ $= P\left[Y_i + \sum_{n=1}^{n} 1\{L_i^n > w\} \leq s_i, \ \forall i \in K \right]$ $[Y_i] = | \sum \lambda^3 E(Q_i^3) | (\ell_i - w)$ *i* $E[Y_i] = \left(\sum \lambda^3 E(Q_i^3) \right) \left(\ell_i - w_i^2 \right)$ ℑ∈ ℜ $=\left(\sum_{\mathfrak{I}\in\mathfrak{R}_i}\lambda^\mathfrak{I} E(Q_i^\mathfrak{I})\right)\!(\ell_i \overline{}$

Connection to advance demand information

- • Suppose each order arrival epoch is known *w* time units in advance, where *w>0* is a deterministic constant.
- •Suppose a type-K order arrives at τ , and this information is known at $\tau + w$, we can fill this order upon its arrival with probability,

$$
f_A^K(0) = \mathsf{P}\bigg\{X_i^w(\tau - w) + X_i(\tau - w, \tau) - D_i(\tau - w, \tau) \bigg| \leq s_i - \sum_{n=1}^{Q_t^*} \mathbf{1}[L_i^n > w], \ i \in K\bigg\} = f^K(w).
$$

- •• Advance demand information improves the off-the-shelf fill rate:
- •• Compare $f_A^K(0)$ with that of the modified system, $\hat{f}^K(0)$, where leadtime is reduced from $\hat{f}^{\kappa}(0)$ ˆ L_i to $L_i = [L_i - w]$ $= [L - w]^+$ $\mathbf{0}$ ˆˆ $(0) = P \{ X_i^w + \sum 1[L_i^w > 0] \leq s_i, \ \forall i \in K \} \leq f^{\Lambda}(w)$ $K(G)$ **D** $\begin{bmatrix} Q_i^K \\ \nabla^W \end{bmatrix}$ **C** $\begin{bmatrix} Q_i^K \\ \nabla^H \end{bmatrix}$ $\begin{bmatrix} Q_i^K \\ \nabla^H \end{bmatrix}$ $\begin{bmatrix} Z_K \\ \nabla^H \end{bmatrix}$ $\begin{bmatrix} Z_K \\ \nabla^H \end{bmatrix}$ $i \in \bigcup_i \mathbf{I} \cup \{i\} \neq \emptyset$ *n* $f^{\Lambda}(0) = P \{ X_i^w + \sum_{i=1}^{n} [L_i^m > 0] \leq s_i, \ \forall i \in K \} \leq f^{\Lambda}(w)$ = $=\mathrm{P}\left\{X_i^w+\sum_{i=1}^{Q_i^k}1[\hat{L}_i^n>0]\leq s_i,\ \forall i\in K\right\}\leq$ $X_i^w + \sum_{n=0} \mathbb{1}[\hat{L}_i^n > 0] \leq s_i, \ \forall i \in K$
- •• Knowing demand in advance (by w time units) is more effective, in terms of order fill rate, than reducing the supply leadtime of components.