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Solution of finite element equilibrium equations in dynamic analysis

LECTURE 10 Solution of dynamic response by direct
integration

Basic concepts used
Explicit and implicit techniques
Implementation of methods

Detailed discussion of central difference and
Newmark methods

Stability and accuracy considerations
Integration errors

Modeling of structural vibration and wave propa-
gation problems

Selection of element and time step sizes

Recommendations on the use of the methods in
practice

TEXTBOOK: Sections: 9.1, 9.2.1, 9.2.2, 9.2.3, 9.2.4, 9.2.5, 9.4.1,
9.4.2, 9.4.3, 9.4.4

Examples: 9.1, 9.2, 9.3, 9.4, 9.5, 9.12
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Solution of finite element equilibrium equations in dynamic analysis

(il e e S

DIRECT INTEGRATION
SOLUTION OF EQUILIBRIUM
EQUATIONS IN DYNAMIC
ANALYSIS

MU+cU+KU=R

e explicit, implicit @ selection of solution
integration time step (At)

® computational ® some modeling
considerations considerations

i rrrrrrriyrzrrrrez

Equilibrium equations in dynamic
analysis

MU+CU+KU=R (9.1)

or




Solution of finite element equilibrium equations in dynamic analysis

Load description

Ri(t)

At Aty Aty time

He

|
t+ A1) hme

Fig. 1. Evaluation of externally
applied nodal point load vector
IR attime t.

THE CENTRAL DIFFERENCE METHOD (CDM)

At
ty _ 1, t-At, , t+At
_U_ - 2At(- l_J_+ H) (94)
Mmee toek tu = 'R (9.5)

an explicit integration scheme

10-4



Solution of finite element equilibrium equations in dynamic analysis

Combining (9.3) to (9.5) we obtain

1 1\ttt 2 A\t
M+ 1 C R- (K-—5M\U
<At2 2t—> il <— Az—)

Computational considerations

o to start the solution, use
. 2

(9.7)

e in practice, mostly used with
lumped mass matrix and low-order
elements.




Solution of finite element equilibrium equations in dynamic analysis

Stability and Accuracy of CDM

e At must be smaller than Atcr

T
at. =N . T = smallest natural
cr il n . .
period in the system

hence method is conditionally stable

e in practice, use for continuum elements,

AL _.JE
Atic—, C—‘/;

for lower-order elements

AL = smallest distance between
nodes

for high-order elements

AL = (smallest distance between
nodes)/ (rel. stiffness factor)

e method used mainly for wave
propagation analysis

o number of operations
o no. of elements and no. of
time steps
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Solution of finite element equilibrium equations in dynamic analysis

THE NEWMARK METHOD

ERty  ty by
(9.28)

(- a)t0 + oY at2

w TR o ¢ DALY Ly THAY teAty
(9.29,

an implicit integration scheme solution
is obtained using

R

g tHAty _ teAt

e In practice, we use mostly

which is the

constant-average-acceleration
method
(Newmark’s method)

e method is unconditionally stable

e method is used primarily for analysis
of structural dynamics problems

e number of operations

tunmé + 2nmt
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Solution of finite element equilibrium equations in dynamic analysis

Accuracy considerations

e time step At is chosen based
on accuracy considerations only

o Consider the equations

MO+ku=R
and
n
!. = g-i X'|(‘t)
i=1
where
_ 2
1<_$'| - w-i MSE]

Using
o ko=9"; oTMa=1
where
2
W

we obtain n equations from which
to solve for x;(t) (see Lecture 11)

. 2
X. + w: X. = 0.
1 1 ¢

i ¢ R i=T,...,n




Solution of finite element equilibrium equations in dynamic analysis

Hence, the direct step-by-step
solution of

MU+KU=R

corresponds to the direct step-by-
step solution of

3

Therefore, to study the accuracy of
the Newmark method, we can study
the solution of the single degree of
freedom equation

» )
X+wx=r

Consider the case

'>£+w2x=0




Solution of finite element equilibrium eqnations in dynamic analysis
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Fig. 9.8 (a) Percentage period elonga-
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Fig. 9.8 (b) Percentage period elonga-
tions and amplitude decays.
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Fig. 9.4. The dynamic load factor
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Solution of finite element equilibrium equations in dynamic analysis
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Solution of finite element equilibrium equations in dynamic analysis

Modeling of a structural vibration
problem

1) Identify the frequencies con-
tained in the loading, using a
Fourier analysis if necessary.

2) Choose a finite element mesh
that accurately represents all
frequencies up to about four
times the highest frequency

Wy, contained in the loading.

3) Perform the direct integration
analysis. The time step At for
this solution should equal about

1 _
ﬁTu' where Tu = ZW/mu .
or be smaller for stability reasons.

Modeling of a wave propagation
problem

If we assume that the wave length
is L, . the total time for the
wave to travel past a point is

(9.100)

where c¢ is the wave speed. Assuming
that n time steps are necessary to
represent the wave, we use

t
At = TW (9.101)

and the “‘effective length” of a
finite element should be

Le = ¢ At (9.102)
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Solution of finite element equilibrium equations in dynamic analysis

SUMMARY OF STEP-BY-STEP INTEGRATIONS

— INITIAL CALCULATIONS ---

1. Form linear stiffness matrix K ,
mass matrix M and damping
matrix C, whichever applicable;

Calculate the following constants:

Newmark method: § > 0.50, a > 0.25(0.5+6)2
ag=1/(est?)  a, = 6/(oAt) a,=1/(ont)
a,=68/a-1 a5=At(6/cx-2)/2 ag=ay
ag=-a, a9=At(1-6) ayq = St
Central difference method:

- 2 _ -

aq= 1/(20)-1

37= -3,

a3= 1/a2

2. Initialize Ou, 90,

For central difference method
only, calculate At from
initial conditions: —

3. Form effective linear coefficient
matrix;

in implicit time integration:

K=K+ agM+a,l

in explicit time integration:

M=aM+aC

b




‘Solution of finite element equilibrium equations in dynamic analysis

4. In dynamic analysis using
implicit time integration
triangularize K .

--- FOR EACH STEP ---

(i) Form effective load vector;

in implicit time integration:

tHatp = UAtp 4 mia, tu + 2, Y0+ a, )
- - =0 = 2 = 3 =
t te t;
+Cla; ‘U +a, 0+ ag )
in explicit time integration:
tE - tB + azﬂ(tg- t-AtH) +IC_1 t—AtH _ 1:E
(ii) Solve for displacement
increments;
in implicit time integration:
K t+at, o tHitp U = tHit, ’cg

in explicit time integration:

ﬁ t+At

U= "R
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Solution of finite element equilibrium equations in dynamic analysis

Newmark Method:

t+At: t t:
U=aglU+a; U+tag U

t+At, _ tr t t+At:
U="U+aq U+ay Y

t+AtU - tg s U

Central Difference Method:

£ - a](tmtg | t-bty)

(PRt oty 4 teat

ti _
U = ay ("™ - 2% u)
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