LECTURE 4: Counting

Discrete uniform law

— Assume €2 consists of n equally likely elements
— Assume A consists of k elements

number of elements of A k
Then: P(A) = = —
number of elements of 2 n

e Basic counting principle

e Applications

permutations number of subsets

combinations binomial probabilities
partitions



Basic counting principle

4 shirts
3 ties
2 jackets

Number of possible attires?

e 1 Stages
e n,; choices at stage 1

Number of choices Is: ’Yl‘ v 'le . - -’n.r_'
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Basic counting principle examples

e Number of license plates with 2 letters followed by 3 digits:

26 ‘16 +\0:10-10
e ... if repetition is prohibited: 26 25 + 10 -9 + §

e Permutations: Number of ways of ordering n elements:




Example

e Find the probability that:
six rolls of a (six-sided) die all give different numbers.
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(Assume all outcomes equally likely.)
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Combinations e Definition: (:) number of k-element subsets | _ n!
— of a given n-element set ki(n —k)!
nN=0,12,..

e Two ways of constructing an ordered sequence of k distinct items: le =0 ,',-. .,

— Choose the k£ items one at a time

— Choose k items, then order them -
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Binomial coefficient (:) —— Binomial probabilities
/i iy

e n > 1 independent coin tosses; P(H)=p P(k heads) = (:)pk(l — p)ﬂ—k‘
N6 .

e P(HTTHHH) = P(. P) (! - P)F?? Pq(\ P]
e P(particular sequence) = P# chcl'i (‘ _ P)H: {CH QS

. K Nn-K
e P(particular k—head sequence) = P (\ = P)

P(k heads) = P“ (I-P)M-K' (# k- heod Seyueu«ccs)
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A coin tossing problem

Assumptions:
e independence
e P(H)=p

e Given that there were 3 heads in 10 tosses,
what is the probability that the first two tosses were heads?

— event A: the first 2 tosses were heads

LAV n—k
= i
— event B: 3 out of 10 tosses were heads Pik heads) (k)p (1-p)

e First solution:
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A coin tossing problem

Assumptions:
e independence
e P(H)=p

e Given that there were 3 heads in 10 tosses,
what is the probability that the first two tosses were heads?

— event A: the first 2 tosses were heads

LAV n—k
- i
— event B: 3 out of 10 tosses were heads Pk heads) (k)p (1-p)

e Second solution: Conditional probability law (on B) is uniform
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Partitions
e 1. > 1 distinct items; » > 1 persons
give n; items to person 2

— here nqy,...,ny are given nonnegative integers s
M
— with ng + - +np =n @ '

e Ordering n items: ’Y[J
— Deal n; to each person i, and then order
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number of partitions = ° (multinomial coefficient)
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Example: 52-card deck, dealt (fairly) to four players.
Find P(each player gets an ace)

e Outcomes are: PQ"}‘“DM qu-btlggy 811,@9_‘/
— number of outcomes: j_jl
Py tan 91

i
| | 2
e Constructing an outcome with one ace for each person:

— distribute the aces Y » 3 ) o |
\

— distribute the remaining 48 cards _,‘;LL_,__
vz ezl it
48!
49112119119
521
1.31131131 13!

4.3.2
e Answer:




Example: 52-card deck, dealt (fairly) to four players. A smart solution
Find P(each player gets an ace)

Stack the deck, aces on top
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