LECTURE 11: Derived distributions

- Given the distribution of X, find the distribution of Y = g(X)
 - the discrete case
 - the continuous case
 - general approach, using CDFs
 - the linear case: Y = aX + b
 - general formula when g is monotonic
- Given the (joint) distribution of X and Y, find the distribution of Z = g(X, Y)

Derived distributions — the discrete case

$$Y = g(X)$$

$$p_Y(y) = P(g(X) = y)$$

= $\sum_{x:g(x)=y} p_X(x)$

A linear function of a discrete r.v.

$$Y = aX + b$$
: $p_Y(y) = p_X\left(\frac{y-b}{a}\right)$

A linear function of a continuous r.v.

A linear function of a continuous r.v.

$$Y = aX + b$$

$$f_Y(y) = \frac{1}{|a|} f_X\left(\frac{y-b}{a}\right)$$

$$p_Y(y) = p_X\left(\frac{y-b}{a}\right)$$

A linear function of a normal r.v. is normal

$$X \sim \mathcal{N}(\mu, \sigma^2)$$

$$f_X(x) = \frac{1}{\sqrt{2\pi} \sigma} e^{-(x-\mu)^2/2\sigma^2}$$

$$Y = aX + b$$
, $a \neq 0$

$$f_Y(y) = \frac{1}{|a|} f_X\left(\frac{y-b}{a}\right)$$

If
$$X \sim \mathcal{N}(\mu, \sigma^2)$$
, then $aX + b \sim \mathcal{N}(a\mu + b, a^2\sigma^2)$

A general function g(X) of a continuous r.v.

Two-step procedure:

- Find the CDF of Y: $F_Y(y) = P(Y \le y)$
- Differentiate: $f_Y(y) = \frac{dF_Y}{dy}(y)$

Example: $Y = X^3$; X uniform on [0,2]

Example: Y = a/X

 You go to the gym and set the speed X of the treadmill to a number between 5 and 10 km/hr (with a uniform distribution).
Find the PDF of the time it takes to run 10km.

A general formula for the PDF of Y = g(X) when g is monotonic

Assume g strictly increasing and differentiable

inverse function h

$$f_Y(y) = f_X(h(y)) \left| \frac{dh}{dy}(y) \right|$$

Example: $Y = X^2$; X uniform on [0, 1]

An intuitive explanation for the monotonic case

A nonmonotonic example: $Y = X^2$

The discrete case:

$$p_{Y}(9) =$$

$$p_Y(y) =$$

The continuous case:

A function of multiple r.v.'s: Z = g(X, Y)

- Same methodology: find CDF of Z
- Let Z = Y/X; X, Y independent, uniform on [0, 1]

MIT OpenCourseWare https://ocw.mit.edu

Resource: Introduction to Probability John Tsitsiklis and Patrick Jaillet

The following may not correspond to a particular course on MIT OpenCourseWare, but has been provided by the author as an individual learning resource.

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.