LECTURE 11: Derived distributions

e Given the distribution of X,
find the distribution of ¥ = ¢(X)

— the discrete case

— the continuous case

— general approach, using CDFs

— the linear case: ¥ =aX + b

— general formula when g is monotonic

e Given the (joint) distribution of X and Y,
find the distribution of Z = g(X,Y")



Derived distributions — the discrete case

Y = g(X)
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A linear function of a discrete r.v.
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A linear function of a continuous r.v.
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A linear function of a continuous r.v. Y=aX+Db
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A linear function of a normal r.v. Is normal
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A dgeneral function g(X) of a continuous r.v.

e T wo-step procedure:

— Find the CDF of Y: Fy(y) =P(Y <y)

dFy

— Differentiate: fy(y) = —
Yy

(y)




Example: Y = X3; X uniform on [0, 2]



Example: ¥ =a/X

e You go to the gym and set the speed X of the treadmill
to a number between 5 and 10 km/hr (with a uniform distribution).
Find the PDF of the time it takes to run 10km.



A general formula for the PDF of Y = g(X) when g is monotonic

Assume g strictly increasing

and differentiable

inverse function A [fF = Jx(h(v) ‘_(y | ]
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Example: Y = X2; X uniform on [0, 1]
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An intuitive explanation for the monotonic case

dg
il slope = ()
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A nonmonotonic example: Y = X2

e T he continuous case:

e [ he discrete case:

py(9) =

py(y) =
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A function of multiple r.v.'s: Z =g(X,Y)

e Same methodology: find CDF of Z

e Let Z=Y/X; X,Y independent, uniform on [0, 1]
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