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  Attributes Associated with Social Bias 
Certain individual attributes are tied to social bias (often referred to as ‘protected 

attributes’) : 

• race; 

• religion; 

• national origin; 

• gender; 

• marital status; 

• age; 

• socioeconomic status. 
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Example of Laws In the US 
In the US, there have been laws that prohibit discriminating on the basis of these attributes 

in applications like housing, credit lending, and employment: 

• Penalties for discrimination in housing (US Fair Housing Act) 

• Hiring (the collection of laws also known as Federal Equal Employment Opportunity – Civil 

Rights Act Title VII 1964, EPA 1963, ADEA 1967, ADA 1990, Rehabilitation Act 1973, Civil 

Rights Act 1991, GINA 2008). 

• Lending (Equal Credit Opportunity Act) 

Regardless of legal framework, machine learning has the potential to 

unintentionally embed bias. 

3



© Fortune Media. All rights reserved. This content is excluded from our Creative Commons license. For more information, see https://ocw.mit.edu/help/faq-fair-use/ 
source: 

https://fortune.com/2018/10/10/amazon-ai-recruitment-bias-women-sexist/ 4

https://ocw.mit.edu/help/faq-fair-use/
https://fortune.com/2018/10/10/amazon-ai-recruitment-bias-women-sexist/


© MIT Technology Review. All rights reserved. This content is excluded from our Creative Commons license. For more information, see https://ocw.mit.edu/help/faq-fair-use/
source: 

https://www.technologyreview.com/s/612775/algorithms-criminal-justice-ai/ 5

https://ocw.mit.edu/help/faq-fair-use/
https://www.technologyreview.com/s/612775/algorithms-criminal-justice-ai/


 © NY Times. All rights reserved. This content is excluded from our Creative Commons license. For more information, see https://ocw.mit.edu/help/faq-fair-use/
source: 

https://www.nytimes.com/2019/03/28/us/politics/facebook-housing-discrimination.html 6

https://ocw.mit.edu/help/faq-fair-use/
https://www.nytimes.com/2019/03/28/us/politics/facebook-housing-discrimination.html


Train, Test 

7



 

   Fairness Starts with the Training Set 

• The training set can carry the biases of the people labeling the data 

• Bad training data => bad prediction 

• The training data may not be representative of all the groups 

• Hidden correlations in input data 

• Individuals may misremember past situations - selective perception (Dearborn & Simon, 

1958) 
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 Base Case: Fairness Through Unawareness 

• The default fairness method in machine learning is fairness-through-unawareness 

• Fairness-through-unawareness refers to leaving out of the model protected social 

attributes such as gender, race, and other characteristics deemed sensitive 

• However, ignoring meaningful group differences does not erase inequality but instead 

can perpetuate it. 
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    Failures of Fairness through Unawareness 
• When race, gender, and other sensitive variables are treated as protected, other variables 

such as college attended, hometown, or various resume indicators that remain unprotected 

may still be highly correlated with the protected attributes. 

• For example, researchers at Carnegie Mellon University revealed that gender, a protected 

attribute, caused an unintentional change in Google’s advertising system such that ad 

listings targeted for users seeking high-income jobs were presented to men at nearly six 

times the rate they were presented to women (Datta et al., 2015). 
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 Review Questions 

• What are the sensitive attributes in the context in which you work? 

• Do you think the current list of protected attributes is exhaustive? 

• What is “fairness through unawareness”? 

• What variables might lead to biased predictions for a machine learning hiring 
system in your country? 

• What are some risks to an organization choosing “unawareness”? 
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