
 
 

   

                
                 

       

  

 

               
            

Performance Engineering of Software Systems 
Massachusetts Institute of Technology 6.172 
Prof. Charles E. Leiserson and Prof. Julian Shun Handout 2 

Homework 1: Getting Started 

This homework introduces the environment and tools you will be using to complete your future project 
assignments. It includes a quick C primer. You should use this assignment to familiarize yourself with the 
tools you will be using throughout the course. 

1 Software engineering 

Best practices 

A good software engineer strives to write programs that are fast, correct, and maintainable. Here 
are a few best practices which we feel are worth reminding you of: 

• Maintainability: comment your code, use meaningful variable names, insert whitespaces,
and follow a consistent style.

• Code organization: break up large functions into smaller subroutines, write reusable helper
functions, and avoid duplicate code.

• Version control: write descriptive commit messages, and commit your changes frequently
(but don’t commit anything which doesn’t compile).

• Assertions: frequently make assertions within your code so that you know quickly when
something goes wrong.

Pair programming 

Pair programming is a technique in which two programmers work on the same machine. Ac-
cording to Laurie Williams from North Carolina State University, “One of the programmers, the 
driver, has control of the keyboard/mouse and actively implements the program. The other 
programmer, the observer, continuously observes the work of the driver to identify tactical (syn-
tactic, spelling, etc.) defects, and also thinks strategically about the direction of the work.” The 
programmers work equally to develop a piece of software as they periodically switch roles. 

You will gain more experience with pair programming during Project 1. 

1



[Note: This course makes use of AWS and Git features which may not be available to all OCW users.] 

4 C Primer 

This section will be a short introduction to the C programming language. The code used in the 
exercises is located in homework1/c-primer in your repository. 

Why use C? 

• Simple: No complicated object-oriented abstractions like Java/C++. 

• Powerful: Offers direct access to memory (but does not offer protection in accessing mem-
ory). 

• Fast: No overhead of a runtime or JIT compiler, and no behind-the-scenes runtime features 
(like garbage collection) that use machine resources. 

• Ubiquitous: C is the most popular language for low-level and performance-intensive soft-
ware like device drivers, operating system kernels, and microcontrollers. 

2



Preprocessing 

The C preprocessor modifies source code before it is passed to the compilation phase. Specifically, 
it performs string substitution of #define macros, conditionally omits sections of code, processes 
#include directives to import entire files’ worth of code, and strips comments from code. 

As an example, consider the code in preprocess.c, which is replicated in Figure 1. 

01 // All occurrences of ONE will be replaced by 1. 
02 #define ONE 1 
03 

04 // Macros can also behave similar to inline functions. 
05 // Note that parentheses around parameters are required to preserve order of 
06 // operations. Otherwise, you can introduce bugs when substitution happens. 
07 #define MIN(a,b) ((a) < (b) ? (a) : (b)) 
08 

09 int c = ONE, d = ONE + 5; 
10 int e = MIN(c, d); 
11 

12 #ifndef NDEBUG 
13 // This code will be compiled only when 
14 // the macro NDEBUG is not defined. 
15 // Recall that if clang is passed -DNDEBUG on the command line, 
16 // then NDEBUG will be defined. 
17 if (something) {} 
18 #endif 

Figure 1: A sample C program. If -DNDEBUG is not on, the preprocessor will omit the if statement 
in line 17. 

Exercise: Direct clang to preprocess preprocess.c. 

$ clang -E preprocess.c 

The preprocessed code will be output to the console. Now rerun the C preprocessor with the 
following command: 

$ clang -E -DNDEBUG preprocess.c 

You will notice that the if statement won’t appear in the preprocessor output. 

Data types and their sizes 

C supports a variety of primitive types, including the types listed in Figure 2. 
Note: On most 64-bit machines and compilers, a standard-precision value (e.g. int, float) is 

32 bits. A short is usually 16 bits, and a long or a double is usually 64. However, the precisions of 
these types are weakly defined by the C standard, and may vary across compilers and machines. 
Confusingly, sometimes int and long are the same precision, and sometimes long and long long 
are the same, both longer than int. Sometimes, int, long, and long long all mean the exact same 
thing! 

3



19 short s; // short signed integer 
20 unsigned int i; // standard-length unsigned integer 
21 long l; // long signed integer 
22 long long l; // extra-long signed integer 
23 char c; // represents 1 ASCII character (1 byte) 
24 float f; // standard-precision floating point number 
25 double d; // double-precision floating point number 

Figure 2: Some of the primitive types in C. 

For throwaway variables or variables which will stay well under precision limits, use a regular 
int. The precisions of these values are set in order to maximize performance on machines with 
different word sizes. If you are working with bit-level manipulation, it is better to use unsigned 
data types such as uint64_t (unsigned 64 bit int). Otherwise, it is often better to use a non-
explicit variable such as a regular int. 

Furthermore, if you know the architecture you’re working with, it is often better to write code 
with explicit data types instead (such as the ones in Figure 3). 

26 #include <stdint.h> 
27 

28 uint64_t unsigned_64_bit_int; 
29 int16_t signed_16_bit_int; 

Figure 3: Examples of explicit types in C. 

You can define more complex data types by composing primitive types into a struct. For 
example, one example of a struct definition in C is provided in Figure 4. 

30 typedef struct { 
31 int id; 
32 int year; 
33 } student; 
34 

35 student you; 
36 // access values on a struct with . 
37 you.id = 12345; 
38 you.year = 3; 

Figure 4: Examples of a struct declaration in C. 

Exercise: Edit sizes.c to print the sizes of each of the following types: int, short, long, char, 
float, double, unsigned int, long long, uint8_t, uint16_t, uint32_t, uint64_t, uint_fast8_t, 
uint_fast16_t, uintmax_t, intmax_t, __int128, int[] and student. Note that __int128 is a clang 

4

https://gcc.gnu.org/onlinedocs/gcc/C-Extensions.html#C-Extensions


C extension, and not part of standard C. To check the size of an int array, print the size of the 
array x declared in the provided code. 

To compile and run this code, use the following command: 

$ make sizes && ./sizes 

To avoid creating repetitive code, you may find it useful to define a macro and call it for each of 
the types. 

If you are interested in learning more about built-in types, check out http://en.cppreference.com/ 
w/c/types/integer . 

Pointers 

Pointers are first-class data types that store addresses into memory. A pointer can store the 
address of anything in memory, including another pointer. In other words, it is possible to have 
a pointer to a pointer. 

Arrays behave very similarly to pointers: both hold information about the type and loca-
tion of values in memory. There are a few gotchas involved with treating pointers and arrays 
equivalently, however.1 

Consider the following (buggy) snippet of code from pointer.c in Figure 5. 

1For further reading on this, try out the challenge at https://blogs.oracle.com/ksplice/entry/ 
the_ksplice_pointer_challenge after class. 

5

https://gcc.gnu.org/onlinedocs/gcc/C-Extensions.html#C-Extensions
http://en.cppreference.com/w/c/types/integer
http://en.cppreference.com/w/c/types/integer
https://blogs.oracle.com/ksplice/entry/the_ksplice_pointer_challenge
https://blogs.oracle.com/ksplice/entry/the_ksplice_pointer_challenge


39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

int main(int argc, char* argv[]) { // What is the type of argv? 
int i = 5; 
// The & operator here gets the address of i and stores it into pi 
int* pi = &i; 
// The * operator here dereferences pi and stores the value -- 5 --
// into j. 
int j = *pi; 

char c[] = "6.172"; 
char* pc = c; // Valid assignment: c acts like a pointer to c[0] here. 
char d = *pc; 
printf("char d = %c\n", d); // What does this print? 

// compound types are read right to left in C. 
// pcp is a pointer to a pointer to a char, meaning that 
// pcp stores the address of a char pointer. 
char** pcp; 
pcp = argv; // Why is this assignment valid? 

const char* pcc = c; // pcc is a pointer to char constant 
char const* pcc2 = c; // What is the type of pcc2? 

// For each of the following, why is the assignment: 
*pcc = ’7’; // invalid? 
pcc = *pcp; // valid? 
pcc = argv[0]; // valid? 

char* const cp = c; // cp is a const pointer to char 
// For each of the following, why is the assignment: 
cp = *pcp; // invalid? 
cp = *argv; // invalid? 
*cp = ’!’; // valid? 

const char* const cpc = c; // cpc is a const pointer to char const 
// For each of the following, why is the assignment: 
cpc = *pcp; // invalid? 
cpc = argv[0]; // invalid? 
*cpc = ’@’; // invalid? 

return 0; 
} 

Figure 5: An example of valid and invalid pointer usage in C. 

6



Exercise: Compile pointer.c using the following command: 

$ make pointer 

You will see compilation errors corresponding to the invalid statements mentioned in the above 
program. Why are these statements invalid? Comment out those invalid statements and recom-
pile the program. (Do not worry if you see additional warnings about unused variables.) 

Write-up 2: Answer the questions in the comments in pointer.c. For example, why are 
some of the statements valid and some are not? 

Write-up 3: For each of the types in the sizes.c exercise above, print the size of a pointer to 
that type. Recall that obtaining the address of an array or struct requires the & operator. 
Provide the output of your program (which should include the sizes of both the actual type 
and a pointer to it) in the writeup. 

Argument passing 

In C, arguments2 to a function are passed by value. That means that if you pass an integer to 
function foo(int f), a new variable f will be initialized inside foo with the same value as the 
integer you passed in. 

For instance, consider the code in Figure 6 that swaps two integers. Why doesn’t it work as 
expected? 

80 void swap(int i, int j) { 
81 int temp = i; 
82 i = j; 
83 j = temp; 
84 } 
85 

86 int main() { 
87 int k = 1; 
88 int m = 2; 
89 swap(k, m); 
90 // What does this print? 
91 printf("k = %d, m = %d\n", k, m); 
92 } 

Figure 6: An incorrect implementation of swap in C. 

2In general, parameters are the variables that appear in a function definition, and arguments are the data that are 
actually passed in at runtime. 

7



There are two ways to fix this code. One way is to change swap() to be a macro, causing the 
operations to be evaluated in the scope of the macro invocation. Another way is to change swap() 
to use pointers. We will now ask you to fix the code by using pointers. 

Write-up 4: File swap.c contains the code to swap two integers. Rewrite the swap() function 
using pointers and make appropriate changes in main() function so that the values are 
swapped with a call to swap(). Compile the code with make swap and run the program with 
./swap. Provide your edited code in the writeup. Verify that the results of both sizes.c and 
swap.c are correct by using the python script verifier.py. 

5 Basic tools 

The code that we will be using in this section is located in homework1/matrix-multiply. 

Building and running your code 

You can build the code by going to the homework1/matrix-multiply directory and typing make. 
The program will compile using Tapir, a cutting-edge derivative of Clang/LLVM. Notice that we 
are only compiling with optimization level 1 (i.e., -O1). 

Exercise: Modify your Makefile so that the program is compiled using optimization level 3 (i.e., 
-O3). 

Write-up 5: Now, what do you see when you type make clean; make? 

You can then run the built binary by typing ./matrix_multiply. The program should print 
out something and then crash with a segmentation fault. 

Using a debugger 

While running your program, if you encounter a segmentation fault, bus error, or assertion 
failure, or if you just want to set a breakpoint, you can use the debugging tool GDB. 

Exercise: Start a debugging session in GDB: 

$ gdb --args ./matrix_multiply 

This command should give you a GDB prompt, at which you should type run or r: 

$ (gdb) run 

8

https://verifier.py


Your program will crash, giving you back a prompt, where you can type backtrace or bt to get 
a stack trace: 

93 Program received signal SIGSEGV, Segmentation fault. 
94 0x0000000000400de4 in matrix_multiply_run () 
95 (gdb) bt 
96 #0 0x0000000000400de4 in matrix_multiply_run () 
97 #1 0x0000000000400bbe in main () 

This stack trace says that the program crashes in matrix_multiply_run, but doesn’t tell any 
other information about the error. In order to get more information, build a “debug” version of 
the code. First, quit GDB by typing quit or q: 

98 (gdb) q 
99 A debugging session is active. 

100 

101 Inferior 1 [process 26817] will be killed. 
102 

103 Quit anyway? (y or n) y 

Next, build a “debug” version of the code by typing make DEBUG=1: 

104 $ make DEBUG=1 
105 clang -g -DDEBUG -O0 -Wall -std=c99 -D_POSIX_C_SOURCE=200809L -c -o testbed.o testbed.c 
106 clang -g -DDEBUG -O0 -Wall -std=c99 -D_POSIX_C_SOURCE=200809L -c -o matrix_multiply.o \ 
107 matrix_multiply.c 
108 clang -o matrix_multiply testbed.o matrix_multiply.o -lrt -flto -fuse-ld=gold 

The major differences from the optimized build are ‘-g’ (add debug symbols to your program) 
and ‘-O0’ (compile without any optimizations). Once you have created a debug build, you can 
start a debugging session again: 

109 $ gdb --args ./matrix_multiply 
110 (gdb) r 
111 ... 
112 Program received signal SIGSEGV, Segmentation fault. 
113 0x00000000004011cf in matrix_multiply_run (A=0x603270, B=0x6031d0, C=0x603130) 
114 at matrix_multiply.c:90 
115 90 C->values[i][j] += A->values[i][k] * B->values[k][j]; 

Now, GDB can tell that a segmentation fault occurs at at matrix_multiply.c line 90. You can 
ask GDB to print values using print or p: 

9



116 gdb) p A->values[i][k] 
117 $1 = 7 
118 (gdb) p B->values[k][j] 
119 Cannot access memory at address 0x0 
120 (gdb) p B->values[k] 
121 $2 = (int *) 0x0 
122 (gdb) p k 
123 $3 = 4 

This suggests that B->values[4] is 0x0, which means B doesn’t have row 5. There is something 
wrong with the matrix dimensions. 

Using assertions 

The tbassert package is a useful tool for catching bugs before your program goes off into the 
weeds. If you look at matrix_multiply.c, you should see some assertions in matrix_multiply_run 
routine that check that the matrices have compatible dimensions. 

Exercise: Uncomment these lines and a line to include tbassert.h at the top of the file. Then, 
build and run the program again using GDB. Make sure that you build using make DEBUG=1. You 
should see: 

124 (gdb) r 
125 ... 
126 Running matrix_multiply_run()... 
127 matrix_multiply.c:80 (int matrix_multiply_run(const matrix *, const matrix *, matrix *)) 
128 Assertion A->cols == B->rows failed: A->cols = 5, B->rows = 4 
129 

130 Program received signal SIGABRT, Aborted. 
131 0x00007ffff7843c37 in raise () from /lib/x86_64-linux-gnu/libc.so.6 

Now, GDB tells that “Assertion ‘A->cols == B->rows’ failed”, which is much better than 
the former segmentation fault. The assertion provides a printf-like API that allows you to print 
values in your own output, as above. However, even if you don’t print values in your assertions, 
the debug build still has the symbols for GDB, as above. Unlike the above, however, if you try to 
print A->cols, you will fail. The reason is that GDB is not in the stack frame you want. You can 
get the stack trace to see which frame you want (#3 in this case), and type frame 3 or f 3 to move 
to frame #3. After that, you can print A->cols and B->cols. 

10



132 (gdb) bt 
133 #0 0x00007ffff7843c37 in raise () from /lib/x86_64-linux-gnu/libc.so.6 
134 #1 0x00007ffff7847028 in abort () from /lib/x86_64-linux-gnu/libc.so.6 
135 #2 0x000000000040121b in matrix_multiply_run (A=0x603270, B=0x6031d0, C=0x603130) 
136 at matrix_multiply.c:79 
137 #3 0x0000000000400db2 in main (argc=1, argv=0x7fffffffdf58) at testbed.c:127 
138 (gdb) f 3 
139 #3 0x0000000000400db2 in main (argc=1, argv=0x7fffffffdf58) at testbed.c:127 
140 127 matrix_multiply_run(A, B, C); 
141 (gdb) p A->cols 
142 $1 = 5 
143 (gdb) p B->rows 
144 $2 = 4 

You should see the values 5 and 4, which indicates that we are multiplying matrices of in-
compatible dimensions. 

You will also see an assertion failure with a line number for the failing assertion without 
using GDB. Since the extra checks performed by assertions can be expensive, they are disabled 
for optimized builds, which are the default in our Makefile. As a result, if you make the program 
without DEBUG=1, you will not see an assertion failure. 

You should consider sprinkling assertions throughout your code to check important invari-
ants in your program, since they will make your life easier when debugging. In particular, 
most nontrivial loops and recursive functions should have an assertion of the loop or recursion 
invariant. 

Exercise: Fix testbed.c, which creates the matrices, rebuild your program, and verify that it now 
works. You should see “Elapsed execution time...” after running 

$ ./matrix_multiply 

Commit and push your changes to the Git repository: 

$ git commit -am ’Your commit message’ 

$ git push origin master 

Next, check the result of the multiplication. Run 

$ ./matrix_multiply -p 

The program will print out the result. The result seems to be wrong, however. You can check the 
multiplication of zero matrices by running 

$ ./matrix_multiply -pz 

Using a memory checker 

Some memory bugs do not crash the program, so GDB cannot tell you where the bug is. You can 
use the memory checking tools AddressSanitizer and Valgrind to track these bugs. 

11



AddressSanitizer 

AddressSanitizer is a quick memory error checker that uses compiler instrumentation and a 
run-time library. It can detect a wide variety of bugs (including memory leaks). 

To use AddressSanitizer, we need to pass the appropriate flags. First, do 

$ make clean 

to get rid of the existing build. 
Next, do 

$ make ASAN=1 

to build with AddressSanitizer’s instrumentation. 

145 $ make ASAN=1 
146 clang -O1 -g -fsanitize=address -Wall -std=c99 -D_POSIX_C_SOURCE=200809L -c \ 
147 testbed.c -o testbed.o 
148 clang -O1 -g -fsanitize=address -Wall -std=c99 -D_POSIX_C_SOURCE=200809L -c \ 
149 matrix_multiply.c -o matrix_multiply.o 
150 clang -o matrix_multiply testbed.o matrix_multiply.o -lrt -flto -fuse-ld=gold \ 
151 -fsanitize=address 

Finally, run the program with 

$ ./matrix_multiply 

Write-up 6: What output do you see from AddressSanitizer regarding the memory bug? 
Paste it into your writeup here. 

Valgrind 

Valgrind is another tool for checking memory leaks. If you want to check a program but are not 
able to instrument it, Valgrind is a good option for detecting memory bugs. 
Exercise: First, do 

$ make clean && make 

to get rid of the existing build and get a fresh build. Run Valgrind using 

$ valgrind ./matrix_multiply -p 

You need the -p switch, since Valgrind only detects memory bugs that affect outputs. You should 
also use a “debug” version to get a good result. This command should print out many lines. The 
important ones are 

12



152 ==43644== Use of uninitialised value of size 8 
153 ==43644== at 0x508899B: _itoa_word (_itoa.c:179) 
154 ==43644== by 0x508C636: vfprintf (vfprintf.c:1660) 
155 ==43644== by 0x50933D8: printf (printf.c:33) 
156 ==43644== by 0x401137: print_matrix (matrix_multiply.c:68) 
157 ==43644== by 0x400E0E: main (testbed.c:133) 

This output indicates that the program used a value before initializing it. The stack trace 
indicates that the bug occurs in testbed.c:133, which is where the program prints out matrix C. 

Exercise: Fix matrix_multiply.c to initialize values in matrices before using them. Keep in mind 
that the matrices are stored in structs. Rebuild your program, and verify that it outputs a correct 
answer. Again, commit and push your changes to the Git repository. 

Write-up 7: After you fix your program, run ./matrix_multiply -p. Paste the program 
output showing that the matrix multiplication is working correctly. 

Memory management 

The C programming language requires you to free memory after you are done using it, or else 
you will have a memory leak. Valgrind can track memory leaks in the program. Run the same 
Valgrind command, and you will see these lines at the very end: 

158 ==2158== LEAK SUMMARY: 
159 ==2158== definitely lost: 48 bytes in 3 blocks 
160 ==2158== indirectly lost: 288 bytes in 15 blocks 
161 ==2158== possibly lost: 0 bytes in 0 blocks 
162 ==2158== still reachable: 0 bytes in 0 blocks 
163 ==2158== suppressed: 0 bytes in 0 blocks 

This output suggests that there are indeed memory leaks in the program. To get more in-
formation, you can build your program in debug mode and again run Valgrind, using the flag 
--leak-check=full 

$ valgrind --leak-check=full ./matrix_multiply -p 

The trace shows that all leaks are from the creations of matrices A, B, and C. 

Exercise: Fix testbed.c by freeing these matrices after use with the function free_matrix. Re-
build your program, and verify that Valgrind doesn’t complain about anything. Commit and 
push your changes to the Git repository. 

13



Write-up 8: Paste the output from Valgrind showing that there is no error in your program. 

Checking code coverage 

Bugs may exist in code that doesn’t get executed in your tests. You may find it surprising when 
someone testing your code (like a professor or a TA) uncovers a crash on a line that you never 
exercised. Additionally, lines that are frequently executed are good candidates for optimization. 
The Gcov tool provides a line-by-line execution count for your program. 

Exercise: To use Gcov, modify your Makefile and add the flags -fprofile-arcs and -ftest-coverage 
to the CFLAGS and LDFLAGS variables. You will have to rebuild from scratch using make clean 
followed by make DEBUG=1. Try running your code normally with ./matrix_multiply -p. Note 
that a number of new .gcda and .gcno files were created during your execution. 

Now use the llvm-cov commandline utility on testbed.c: 

$ llvm-cov gcov testbed.c 

A new file, testbed.c.gcov was created that is identical to the original testbed.c, except that it 
has the number of times each line was executed in the code. In that file, you will see: 

164 1: 99: 
165 if (use_zero_matrix) { 
166 #####: 100: for (int i = 0; i < A->rows; i++) { 
167 #####: 101: for (int j = 0; j < A->cols; j++) { 
168 #####: 102: A->values[i][j] = 0; 
169 #####: 103: } 
170 #####: 104: } 
171 #####: 105: for (int i = 0; i < B->rows; i++) { 
172 #####: 106: for (int j = 0; j < B->cols; j++) { 
173 #####: 107: B->values[i][j] = 0; 
174 #####: 108: } 
175 #####: 109: } 

The hash-marks indicate lines that were never executed. In general, it is unusual to run a 
code-coverage utility on a testbed, but a set of untested lines in your core code could lead to 
unexpected results when executed by someone else. 

Another handy use of Gcov is identifying which lines got executed the most frequently. Code 
that gets run the most is often the most costly in terms of performance. Run llvm-cov gcov 
matrix_multiply.c and look at the output: 

14



176 10: 93: for (int i = 0; i < A->rows; i++) { 
177 40: 94: for (int j = 0; j < B->cols; j++) { 
178 160: 95: for (int k = 0; k < A->cols; k++) { 
179 64: 96: C->values[i][j] += A->values[i][k] * B->values[k][j]; 
180 64: 97: } 
181 16: 98: } 
182 4: 99: } 

These are the loops in matrix_multiply_run. Clearly, this function is a good candidate for 
optimization. 

When you are done using Gcov, remove the flags you added to the Makefile because they add 
costly overhead to the execution, and will negatively impact your actual performance numbers. 
You should never run benchmarks on code that is instrumented with Gcov. Don’t forget to 
make clean to remove the instrumented object files. 

6 Using AWSRUN 

You share the athena.dialup.mit.edu machines with all of MIT. Do not perform computationally 
intensive tasks on these machines. Directly running and timing the execution on your own 
Amazon VMs may give inaccurate results; you may be running a small VM, and there might also 
be measurement errors due to interference with your editor or other programs you are running. 
To get an accurate timing measure on a dedicated machine, you can use the AWSRUN utilities. 

When you are ready to do a performance run you can use 

$ awsrun ./matrix_multiply 

and your job will be queued. The command will not return until the job has been completed and 
you get results unless you control-C twice (canceling the process). Once the job is complete, your 
output should look something like below: 

183 $ awsrun ./matrix_multiply 
184 

185 Submitting Job: ./matrix_multiply 
186 Waiting for job to finish... 
187 ==== Standard Error ==== 
188 Setup 
189 Running matrix_multiply_run()... 
190 

191 

192 

193 ==== Standard Output ==== 
194 Elapsed execution time: 0.000001 sec 

15

https://athena.dialup.mit.edu


Performance enhancements 

To get an idea of the extent to which performance optimizations can affect the performance of 
your program, we will first increase the size of the input to demonstrate the effects of changes in 
the code. 

Exercise: Increase the size of all matrices to 1000 × 1000. 
Now let’s try one of the techniques from the first lecture. Right now, the inner loop produces 

a sequential access pattern on A and skips through memory on B. 
Let’s rearrange the loops to produce a better access pattern. 

Exercise: First, you should run the program as is to get a performance measurement. Next, swap 
the j and k loops, so that the inner loop strides sequentially through the rows of the C and B 
matrices. Rerun the program, and verify that you have produced a speedup. Commit and push 
your changes to the Git repository. 

Write-up 9: Report the execution time of your programs before and after the optimization. 

Compiler optimizations 

To get an idea of the extent to which compiler optimizations can affect the performance of your 
program, rebuild your program in “debug” mode and run it with AWSRUN. 

Exercise: Rebuild it again with optimizations (just type make), and run it with AWSRUN. Both 
versions should print timing information, and you should verify that the optimized version is 
faster. 

Write-up 10: Report the execution time of your programs compiled in debug mode with -O0 
and in non-debug mode with -O3. 

7 C style guidelines 

Code that adheres to a consistent style is easier to read and debug. Google provides a style guide 
for C++ which you may find useful: https://google.github.io/styleguide/cppguide.html 

We have provided a Python script clint.py, which is designed to check a subset of Google’s 
style guidelines for C code. To run this script on all source files in your current directory use the 
command: 

$ python clint.py * 

16

https://google.github.io/styleguide/cppguide.html
https://clint.py
https://clint.py


                  
                   

                 
                  
             

The code the staff provides has no style errors. We suggest, but do not require, that you use 
this tool to clean up your source code. Part of your code-quality grade on projects is based on the 
readability of your code. It can be difficult to maintain a consistent style when multiple people are 
working on the same codebase. For this reason, you may find it useful to use the style checkers 
provided by the 6.172 staff during your group projects to keep your code readable. 

17



MIT OpenCourseWare 
https://ocw.mit.edu 

6.172 Performance Engineering of Software Systems 
Fall 2018 

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms 

18

https://ocw.mit.edu
https://ocw.mit.edu/terms

	Software engineering
	C Primer
	Basic tools
	Using AWSRUN
	C style guidelines
	Submission
	cover.pdf
	Blank Page




