

Performance Engineering of Software Systems
Massachusetts Institute of Technology 6.172
Prof. Charles E. Leiserson and Prof. Julian Shun Handout 16

Homework 10: Data Synchronization

Introduction

The focus of this problem set is the theoretical side of the material taught in class. This prob-
lem set focuses on data synchronization and comparing lock-based and lock-free FIFO queue
implementations.

1 Data synchronization

Figures 1 and 2 present two implementations of a FIFO queue. Figure 1 is a lock-based imple-
mentation, and Figure 2 is a lock-free implementation. In both queue implementations, a pool
of nodes is allocated in advance. A call to new_node() grabs a free node from the pool of nodes,
and free_node(node) returns the node node to the pool. In the implementation of the lock-free
queue, the compare-and-swap instruction CAS(addr, old_val, new_val) is an atomic instruction
that has the following effect:

if (*addr == old_val) {
*addr = new_val;
return true;

}
return false;

For the questions below, assume that CAS can operate on the entire pointer_t, that the compiler
cannot change the order of instructions, and that there are always enough free nodes in the pool
to perform all enqueue operations. Assume also that the nodes in the queue do not cross cache
lines, and thus all writes are atomic.

Read both implementations carefully. Before you start answering the questions, you may
find it helpful to draw diagrams of an empty queue and a queue with a few nodes. Using
these diagrams, try to understand how nodes are inserted and deleted from the queue in both
implementations.

Note that the first node added in initialization of both the lock-based and lock-free version of
the deque is a dummy value and never dequeued. It is only used to denote an empty deque.

2 Check-off Questions

1. What are constraints on enqueue and dequeue in the FIFO queue? You do not need to look
at the code yet.

1

2 Handout 16 — Homework 10: Data Synchronization

2. What is the advantage of using two locks over one lock?

3. In the style of comments of the lock-based FIFO queue code, add comments to the lock-free
code (on paper), explaining what each line does. The comments should be short and precise
(not more than 10 words each). We have provided you a copy of the code in Figure 2.

4. Explain how a new node is inserted into the lock-free queue. How many successful CASes
are needed per node? What happens if the CAS in line 96 fails? How far can the tail lag
behind? Is the program correct without line 96?

5. Carefully look at the code for the lock-free dequeue operation and answer the following
questions:

(a) Line 104 checks what was already assigned in line 101. Why do we need line line 104?

(b) In line 111 the value of the node is read before the head is updated in line 112. Why
is this important? What can happen if we change the order of the lines?

(c) What happens if the CAS in line 112 is unsuccessful?

6. Which implementation do you expect to run faster — the lock-based or the lock-free? Ex-
plain your answer in terms of cost of the synchronization primitives, contention, synchro-
nization overhead, etc.

7. Show how to simplify the lock-based code if only one thread may enqueue nodes to the
queue. Write the pseudocode and comment it. Explain in your own words why your
solution is correct (i.e. any execution sequence keeps the FIFO ordering).

8. Show how to simplify the lock-free code if only one thread may dequeue nodes from the
queue. Write the pseudocode and comment it. Explain in your own words why your
solution is correct (i.e. any execution sequence keeps the FIFO ordering) and why it is
non-blocking.

9. Explain how count is used to handle the ABA problem discussed in recitation.

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

3 Handout 16 — Homework 10: Data Synchronization

struct node_t {
data_t value;
node_t* next;

};
struct queue_t {
node_t* head;
node_t* tail;
mutex_t h_lock;
mutex_t t_lock;

};

void initialize(queue_t* q, data_t value) {
node_t* node = new_node(); // Allocate a new node
node->value = value;
node->next = NULL; // Make it the only node in the queue
q->head = node; // Both head and tail point to it
q->tail = node;
q->h_lock = FREE; // Locks are initially free
q->t_lock = FREE;

}

void enqueue(queue_t* q, data_t value) {
node_t* node = new_node(); // Allocate a new node
node->value = value; // Copy enqueued value into node
node->next = NULL; // Set next pointer of node to NULL
lock(&q->t_lock); // Acquire t_lock to access tail
q->tail->next = node; // Append node at the end of queue
q->tail = node; // Swing tail to node
unlock(&q->t_lock); // Release t_lock

}

bool dequeue(queue_t* q, data_t* pvalue) {
lock(&q->h_lock); // Acquire h_lock to access head
node_t* node = q->head; // Read head
new_head = node->next; // Read next pointer
if (new_head == NULL) { // Is queue empty?
unlock(&q->h_lock); // Release h_lock before return
return false; // Queue was empty

}

*pvalue = new_head->value; // Queue not empty. Read value
q->head = new_head; // Swing head to next node
unlock(&q->h_lock); // Release h_lock
free_node(node); // Free node
return true; // Dequeue succeeded

}

Figure 1: C-like pseudocode declaring, initializing, and adding for lock-based FIFO queue.

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

4 Handout 16 — Homework 10: Data Synchronization

struct pointer_t {
node_t* ptr;
unsigned int count;

};
struct node_t {
data_t value;
pointer_t next;

};
struct queue_t {
pointer_t head;
pointer_t tail;

};

void initialize(queue_t* q, data_t value) {
node_t* node = new_node();
node->value = value;
node->next.ptr = NULL;
q->head.ptr = node;
q->tail.ptr = node;

}

void enqueue(queue_t* q, data_t value) {
node_t* node = new_node();
node->value = value;
node->next.ptr = NULL;
pointer_t tail;
while (true) {
tail = q->tail;
pointer_t next = tail.ptr->next;
if (tail == q->tail) {
if (next.ptr == NULL) {
if (CAS(&tail.ptr->next, next, (struct pointer_t) {node, next.count + 1 })) {
break;

}
} else {
CAS(&q->tail, tail, (struct pointer_t) {next.ptr, tail.count + 1 });

}
}

}
CAS(&q->tail, tail, (struct pointer_t) { node, tail.count + 1 });

}

Figure 2: C-like pseudocode for declaring, initializing, and adding to a lock-free FIFO queue.

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

5 Handout 16 — Homework 10: Data Synchronization

bool dequeue(queue_t* q, data_t* pvalue) {
pointer_t head;
while (true) {
head = q->head;
pointer_t tail = q->tail;
pointer_t next = head.ptr->next;
if (head == q->head) {
if (head.ptr == tail.ptr) {
if (next.ptr == NULL) {
return false;

}
CAS(&q->tail, tail, (struct pointer_t) { next.ptr, tail.count + 1});

} else {
*pvalue = next.ptr->value;
if (CAS(&q->head, head, (struct pointer_t) { next.ptr, head.count + 1})) {
break;

}
}

}
}
free_node(head.ptr);
return true;

}

Figure 3: C-like pseudocode for dequeueing in a lock-free FIFO queue.

MIT OpenCourseWare
https://ocw.mit.edu

6.172 Performance Engineering of Software Systems
Fall 2018

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms

https://ocw.mit.edu
https://ocw.mit.edu/terms

	Data synchronization
	Check-off Questions
	cover.pdf
	Blank Page

