

Performance Engineering of Software Systems
Massachusetts Institute of Technology 6.172
Prof. Charles E. Leiserson and Prof. Julian Shun Handout 13

Homework 8: Cache-Oblivious Algorithms

Then, answer the writeup questions in this handout and submit an individual writeup.
See the following paper for more information on cache-oblivious algorithms:
https:// dl.acm.org/citation.cfm?id=2071383.

For this homework, assume that all matrices are stored in row-major layout.

1 Cache Complexity of Matrix Multiplication

During Lecture 14 we discussed the cache complexity of matrix multiplication of dimension n,
with tall cache assumption of size M and cache line size B. For the naive approach, there
were two cases: 1) If n > M/B, then Θ(n3) cache misses occur, and 2) if M1/2 < n < M/B, then

3/BM1/2) Θ(n3/B) cache misses occur. For the blocking approach, with block size s < M1/2, Θ(n
cache misses occur. The cache-oblivious approach achieves the same complexity as the blocking
approach without the need of the voodoo parameter s.

Checkoff Item 1: Assume we want to multiply two rectangular matrices: m × n with n × r.
Given the same tall cache assumption, please analyze the complexity for one of the
following four cases: the two cases for the naive approach (n > M/B and
M/r < n < M/B), the block approach, and the cache-oblivious approach. You may pick
whichever case you want to analyze.

2 Tableau Construction

Consider the tableau-construction problem from Lecture 8. The problem involves filling an N × N
tableau, where each entry of the tableau is calculated as a function of some of its neighbors. To
be specific, the equation to fill an element of the tableau would take the form

A[i][j] = f (A[i − 1][j − 1], A[i][j − 1], A[i − 1][j])

where f is an arbitrary function.

1

https://dl.acm.org/citation.cfm?id=2071383
https://dl.acm.org/citation.cfm?id=2071383

Handout 13 — Homework 8: Cache-Oblivious Algorithms 2

2.1 Iterative Formulation

Consider the code snippet in Figure 1 below.

01 #define A(i, j) A[N + (i) - (j) - 1]
02

03 void tableau(double *A, size_t N) {
04 for (size_t i = 1; i < N; i++) {
05 for (size_t j = 1; j < N; j++) {
06 A(i, j) = f(A(i-1, j-1), A(i, j-1), A(i-1, j));
07 }
08 }
09 }

Figure 1: A simple, iterative loop for filling a tableau.

In this problem, we are only interested in computing the final value of the tableau, stored in
A(N-1,N-1), and hence we really only need 2N − 1 amount of space during computation. Thus,
the algorithm declares A as an array of size 2N − 1.

The algorithm initializes the first row and first column of the tableau, and invokes the tableau
function as shown in Figure 2.

10 for (size_t i = 0; i < N; i++) {
11 A(i, 0) = INIT_VAL;
12 }
13 for (size_t j = 0; j < N; j++) {
14 A(0, j) = INIT_VAL;
15 }
16 tableau(A, N);
17 res = A(N - 1, N - 1);

Figure 2: Initializing and calling the iterative tableau function.

Write-up 1: Explain why 2N − 1 space is sufficient and how the tableau function utilizes
the 2N − 1 space.

Recall the tall cache assumption, which states that B2 < αM, where B is the size of the cache
line, M is the size of the cache, and α ≤ 1 is a constant.

3 Handout 13 — Homework 8: Cache-Oblivious Algorithms

Write-up 2: Assuming that an optimal replacement strategy holds and that the cache is tall,
give a tight upper bound on the cache complexity Q(n) for each of the following cases using
O notation, where c ≤ 1 is a sufficiently small constant:

1. n ≥ cM

2. n < cM

2.2 Recursive Formulation

Now consider the code snippet for a recursive tableau implementation, as shown in Figure 3. This

18 #define A(i, j) A[N + (i) - (j) - 1]
19

20 void recursive_tableau(double *A, size_t rbegin, size_t rend, size_t cbegin,
21 size_t cend) {
22 if (rend-rbegin == 1 && cend-cbegin == 1) {
23 size_t i = rbegin, j = cbegin;
24 A(i, j) = f(A(i-1, j-1), A(i, j-1), A(i-1, j));
25 } else {
26 size_t rmid = rend-rbegin > 1 ? (rbegin + (rend-rbegin) / 2) : rend;
27 size_t cmid = cend-cbegin > 1 ? (cbegin + (cend-cbegin) / 2) : cend;
28 recursive_tableau(A, rbegin, rmid, cbegin, cmid);
29 if (cend > cmid)
30 recursive_tableau(A, rbegin, rmid, cmid, cend);
31 if (rend > rmid)
32 recursive_tableau(A, rmid, rend, cbegin, cmid);
33 if (rend > rmid && cend > cmid)
34 recursive_tableau(A, rmid, rend, cmid, cend);
35 }
36 }

Figure 3: A recursive implementation for filling in a tableau.

algorithm similarly uses only 2N − 1 amount of space, initializes the array A, and invokes the
recursive_tableau function as shown in Figure 4. This recursive algorithm divides the tableau
into four quadrants to compute. As discussed in Lecture 8 (slide 88), after the first quadrant is
done computing, we can then compute the second and third quadrants in parallel. Parallelizing

2−lg3). this way gives us work as Θ(n2) and span as Θ(nlg3) with parallelism as Θ(n We also
discussed (slide 92) a more parallel construction that divides up the tableau 9 ways.

4 Handout 13 — Homework 8: Cache-Oblivious Algorithms

37 for (size_t i = 0; i < N; i++) {
38 A(i, 0) = INIT_VAL;
39 }
40 for (size_t j = 0; j < N; j++) {
41 A(0, j) = INIT_VAL;
42 }
43 if (N > 1) {
44 recursive_tableau(A, 1, N, 1, N);
45 }
46 res = A(N-1, N-1);

Figure 4: Initializing and calling the recursive_tableau function.

Write-up 3: Derive the general formula for work and span, assuming a k2-way tableau
construction (i.e., the tableau is divided up into k2 pieces of size n/k × n/k).

Write-up 4: Answer the following questions assuming that an optimal replacement strategy
holds and that the cache is tall.

1. Show the recurrence relation for the cache complexity Q(n) using the 4-way
construction of the recursive_tableau function.

2. Draw the recursion tree and label the internal nodes and leaves with their cache
complexity Q(n). What’s the height of the recursion tree?

3. How many leaves are in the recursion tree?

4. Using the recursion tree and the recurrence relation, derive a simplified expression for
Q(n).

Write-up 5: Answer the following question assuming that an optimal replacement strategy
holds and that the cache is tall. Assuming a k2-way tableau construction, show that if we are
“unlucky,” where a subpiece is just slightly above the cache size, then we have
Q(n) = Θ(n2k/MB). Also show that if we are lucky and this situation does not arise, then
we have Q(n) = Θ(n2/MB).

MIT OpenCourseWare
https://ocw.mit.edu

6.172 Performance Engineering of Software Systems
Fall 2018

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms

https://ocw.mit.edu
https://ocw.mit.edu/terms

	Cache Complexity of Matrix Multiplication
	Tableau Construction
	Iterative Formulation
	Recursive Formulation

	cover.pdf
	Blank Page

